Skip to main content

The Initiation Step of Eukaryotic DNA Replication

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 50))

Abstract

Eukaryotic initiation of DNA replication is a tightly regulated process. In the yeasts, S-phase-specific cyclin Cdk1 complex as well as Dfb4-Cdc7 kinase phosphorylate the initiation factors Sld2 and Sld3. These factors form a ternary complex with another initiation factor Dbp11 in their phosphorylated state, and associate with the origin of replication. This complex mediates the loading of Cdc45. A second complex called GINS and consisting of Sld5 and Psf1, 2 and 3 is also loaded onto the origin during the initiation process, in an interdependent manner with the Sld2/Sld3/Dpb11 complex. Both complexes cooperate in the recruitment of the replicative DNA polymerases, thus executing the initiation and subsequent establishment of the replication fork. Cdc45 and GINS are essential, well-conserved factors that are retained at the elongating replication fork. They form a stable helicase complex with MCM2-7 and mediate its contact to the replicative DNA polymerases. In contrast, the Sld2/Sld3/Dpb11 complex critical for the initiation is not retained by the elongating replication fork. Sld2 displays limited homology to the amino-terminal region of RecQL4 helicase, which may represent its metazoan orthologue, whereas Sld3 homologues have been identified only in fungi. Dbp11 and its fission yeast homologue Cut5 are members of a large family of BRCT-containing proteins including human TopBP1 and fruit fly Mus101. Similar principles of regulation apply also to human initiation of DNA replication, despite obvious differences in the detailed mechanisms. The regulatory initiation cascade is intimately intertwined with the cell cycle apparatus as well as the checkpoint control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Cdc:

cell division cycle

Cdt:

Cdc10-dependent transcription

CDK:

cyclin-dependent kinase

Csm3:

chromosome segregation in meiosis protein 3

Ctf4:

chromosome transmission fidelity protein 4

DDK:

Dbf4-dependent kinase

Dpb:

DNA polymerase B subunit

Drc1:

DNA replication and checkpoint protein 1

dsDNA:

double-stranded DNA

GINS:

Go Ichi, Nii, and San

MCM:

mini-chromosome maintenance

Mrc1:

mediator of replication checkpoint protein 1

Mus:

nitrogen mustard-sensitive

ORC:

origin recognition complex

pre-RC:

pre-replicative complex

pre-IC:

pre-initition complex

Pob3:

DNA polymerase α binding protein 3

Pol:

DNA polymerase

Psf:

Partner of Sld five

RPA:

replication protein A

ssDNA:

single-stranded DNA

Sld:

synthetically lethal with Dpb11-1

Spt16:

suppressor of protein Ty 16

TopBP1:

DNA topoisomerase II binding protein

Tof1:

topoisomerase 1-associated factor 1

References

  • Alcasabas, A. A., Osborn, A. J., Bachant, J., Hu, F., Werler, P. J., Bousset, K., Furuya, K., Diffley, J. F., Carr, A. M., and Elledge, S. J. (2001) Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat Cell Biol, 3, 958–965.

    CAS  PubMed  Google Scholar 

  • Aparicio, O. M., Stout, A. M., and Bell, S. P. (1999) Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication. Proc Natl Acad Sci USA, 96, 9130–9135.

    CAS  PubMed  Google Scholar 

  • Aparicio, O. M., Weinstein, D. M., and Bell, S. P. (1997) Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell, 91, 59–69.

    CAS  PubMed  Google Scholar 

  • Aparicio, T., Guillou, E., Coloma, J., Montoya, G., and Méndez, J. (2009) The human GINS complex associates with Cdc45 and MCM and is essential for DNA replication. Nucleic Acids Res, 37, 2087–2095.

    CAS  PubMed  Google Scholar 

  • Araki, H., Leem, S. H., Phongdara, A., and Sugino, A. (1995) Dpb11, which interacts with DNA polymerase II (epsilon) in Saccharomyces cerevisiae, has a dual role in S-phase progression and at a cell cycle checkpoint. Proc Natl Acad Sci USA, 92, 11791–11795.

    CAS  PubMed  Google Scholar 

  • Arata, Y., Fujita, M., Ohtani, K., Kijima, S., and Kato, J. Y. (2000) Cdk2-dependent and -independent pathways in E2F-mediated S phase induction. J Biol Chem, 275, 6337–6345.

    CAS  PubMed  Google Scholar 

  • Bachrati, C. Z. and Hickson, I. D. (2008) RecQ helicases: guardian angels of the DNA replication fork. Chromosoma, 117, 219–233.

    CAS  PubMed  Google Scholar 

  • Bauerschmidt, C., Pollok, S., Kremmer, E., Nasheuer, H.-P., and Grosse, F. (2007) Interactions of human Cdc45 with the Mcm2-7 complex, the GINS complex, and DNA polymerases delta and epsilon during S phase. Genes Cells, 12, 745–758.

    CAS  PubMed  Google Scholar 

  • Blow, J. J. and Dutta, A. (2005) Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Biol, 6, 476–486.

    CAS  PubMed  Google Scholar 

  • Bork, P., Hofmann, K., Bucher, P., Neuwald, A. F., Altschul, S. F., and Koonin, E. V. (1997) A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J, 11, 68–76.

    CAS  PubMed  Google Scholar 

  • Boskovic, J., Coloma, J., Aparicio, T., Zhou, M., Robinson, C., Méndez, J., and Montoya, G. (2007) Molecular architecture of the human GINS complex. EMBO Rep, 8, 678–684.

    CAS  PubMed  Google Scholar 

  • Branzei, D. and Foiani, M. (2006) The Rad53 signal transduction pathway: replication fork stabilization, DNA repair, and adaptation. Exp Cell Res, 312, 2654–2659.

    CAS  PubMed  Google Scholar 

  • Callebaut, I. and Mornon, J. P. (1997) From BRCA1 to RAP1: a widespread BRCT module closely associated with DNA repair. FEBS Lett, 400, 25–30.

    CAS  PubMed  Google Scholar 

  • Calzada, A., Hodgson, B., Kanemaki, M., Bueno, A., and Labib, K. (2005) Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev, 19, 1905–1919.

    CAS  PubMed  Google Scholar 

  • Chang, Y. P., Wang, G., Bermudez, V., Hurwitz, J., and Chen, X. S. (2007) Crystal structure of the GINS complex and functional insights into its role in DNA replication. Proc Natl Acad Sci USA, 104, 12685–12690.

    CAS  PubMed  Google Scholar 

  • Choi, J. M., Lim, H. S., Kim, J. J., Song, O. K., and Cho, Y. (2007) Crystal structure of the human GINS complex. Genes Dev, 21, 1316–1321.

    CAS  PubMed  Google Scholar 

  • Chou, D. M., Petersen, P., Walter, J. C., and Walter, G. (2002) Protein phosphatase 2A regulates binding of Cdc45 to the prereplication complex. J Biol Chem, 277, 40520–40527.

    CAS  PubMed  Google Scholar 

  • Christensen, T. W. and Tye, B. K. (2003) Drosophila MCM10 interacts with members of the prereplication complex and is required for proper chromosome condensation. Mol Biol Cell, 14, 2206–2215.

    CAS  PubMed  Google Scholar 

  • Costanzo, V., Robertson, K., Ying, C. Y., Kim, E., Avvedimento, E., Gottesman, M., Grieco, D., and Gautier, J. (2000) Reconstitution of an ATM-dependent checkpoint that inhibits chromosomal DNA replication following DNA damage. Mol Cell, 6, 649–659.

    CAS  PubMed  Google Scholar 

  • Costanzo, V., Shechter, D., Lupardus, P. J., Cimprich, K. A., Gottesman, M., and Gautier, J. (2003) An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol Cell, 11, 203–213.

    CAS  PubMed  Google Scholar 

  • Dalton, S. and Hopwood, B. (1997) Characterization of Cdc47p-minichromosome maintenance complexes in Saccharomyces cerevisiae: identification of Cdc45p as a subunit. Mol Cell Biol, 17, 5867–5875.

    CAS  PubMed  Google Scholar 

  • De Falco, M., Ferrari, E., de Felice, M., Rossi, M., Hübscher, U., and Pisani, F. M. (2007) The human GINS complex binds to and specifically stimulates human DNA polymerase alpha-primase. EMBO Rep, 99, 99–103.

    Google Scholar 

  • Depamphilis, M. L., Blow, J. J., Ghosh, S., Saha, T., Noguchi, K., and Vassilev, A. (2006) Regulating the licensing of DNA replication origins in metazoa. Curr Opin Cell Biol, 18, 231–239.

    CAS  PubMed  Google Scholar 

  • Dephoure, N., Zhou, C., Villén, J., Beausoleil, S. A., Bakalarski, C. E., Elledge, S. J., and Gygi, S. P. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA, 105, 10762–10767.

    CAS  PubMed  Google Scholar 

  • Dolan, W. P., Sherman, D. A., and Forsburg, S. L. (2004) Schizosaccharomyces pombe replication protein Cdc45/Sna41 requires Hsk1/Cdc7 and Rad4/Cut5 for chromatin binding. Chromosoma, 113, 145–156.

    CAS  PubMed  Google Scholar 

  • Falck, J., Petrini, J. H., Williams, B. R., Lukas, J., and Bartek, J. (2002) The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat Genet, 30, 290–294.

    PubMed  Google Scholar 

  • Feng, D., Tu, Z., Wu, W., and Liang, C. (2003) Inhibiting the expression of DNA replication-initiation proteins induces apoptosis in human cancer cells. Cancer Res, 63, 7356–7364.

    CAS  PubMed  Google Scholar 

  • Fisher, D. and Méchali, M. (2004) Sleeping policemen for DNA replication? Nat Cell Biol, 6, 576–577.

    CAS  PubMed  Google Scholar 

  • Gambus, A., Jones, R. C., Sanchez-Diaz, A., Kanemaki, M., van Deursen, F., Edmondson, R. D., and Labib, K. (2006) GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol, 8, 358–366.

    CAS  PubMed  Google Scholar 

  • Garcia, V., Furuya, K., and Carr, A. M. (2005) Identification and functional analysis of TopBP1 and its homologs. DNA Repair (Amst), 4, 1227–1239.

    CAS  Google Scholar 

  • Glover, J. N., Williams, R. S., and Lee, M. S. (2004) Interactions between BRCT repeats and phosphoproteins: tangled up in two. Trends Biochem Sci, 29, 579–585.

    CAS  PubMed  Google Scholar 

  • Grabowski, B. and Kelman, Z. (2003) Archeal DNA replication: eukaryal proteins in a bacterial context. Annu Rev Microbiol, 57, 487–516.

    CAS  PubMed  Google Scholar 

  • Gregan, J., Lindner, K., Brimage, L., Franklin, R., Namdar, M., Hart, E. A., Aves, S. J., and Kearsey, S. E. (2003) Fission yeast Cdc23/Mcm10 functions after pre-replicative complex formation to promote Cdc45 chromatin binding. Mol Biol Cell, 14, 3876–3887.

    CAS  PubMed  Google Scholar 

  • Hardy, C. F. (1997) Identification of Cdc45p, an essential factor required for DNA replication. Gene, 187, 239–246.

    CAS  PubMed  Google Scholar 

  • Hashimoto, Y. and Takisawa, H. (2003) Xenopus Cut5 is essential for a CDK-dependent process in the initiation of DNA replication. EMBO J, 22, 2526–2535.

    CAS  PubMed  Google Scholar 

  • Hennessy, K. M., Lee, A., Chen, E., and Botstein, D. (1991) A group of interacting yeast DNA replication genes. Genes Dev, 5, 958–969.

    CAS  PubMed  Google Scholar 

  • Hoki, Y., Araki, R., Fujimori, A., Ohhata, T., Koseki, H., Fukumura, R., Nakamura, M., Takahashi, H., Noda, Y., Kito, S., and Abe, M. (2003) Growth retardation and skin abnormalities of the Recql4-deficient mouse. Hum Mol Genet, 12, 2293–2299.

    CAS  PubMed  Google Scholar 

  • Homesley, L., Lei, M., Kawasaki, Y., Sawyer, S., Christensen, T., and Tye, B. K. (2000) Mcm10 and the MCM2-7 complex interact to initiate DNA synthesis and to release replication factors from origins. Genes Dev, 14, 913–926.

    CAS  PubMed  Google Scholar 

  • Hopwood, B. and Dalton, S. (1996) Cdc45p assembles into a complex with Cdc46p/Mcm5p, is required for minichromosome maintenance, and is essential for chromosomal DNA replication. Proc Natl Acad Sci USA, 93, 12309–12314.

    CAS  PubMed  Google Scholar 

  • Ichikawa, K., Noda, T., and Furuichi, Y. (2002) Preparation of the gene targeted knockout mice for human premature aging diseases, Werner syndrome, and Rothmund-Thomson syndrome caused by the mutation of DNA helicases [Article in Japanese]. Nippon Yakurigaku Zasshi, 119, 219–226.

    CAS  PubMed  Google Scholar 

  • Kamada, K., Kubota, Y., Arata, T., Shindo, Y., and Hanaoka, F. (2007) Structure of the human GINS complex and its assembly and functional interface in replication initiation. Nat Struct Mol Biol, 14, 388–396.

    CAS  PubMed  Google Scholar 

  • Kamimura, Y., Masumoto, H., Sugino, A., and Araki, H. (1998) Sld2, which interacts with dpb11 in Saccharomyces cerevisiae, is required for chromosomal DNA replication. Mol Cell Biol, 18, 6102–6109.

    CAS  PubMed  Google Scholar 

  • Kamimura, Y., Tak, Y. S., Sugino, A., and Araki, H. (2001) Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae. EMBO J, 20, 2097–2107.

    CAS  PubMed  Google Scholar 

  • Kanemaki, M. and Labib, K. (2006) Distinct roles for Sld3 and GINS during establishment and progression of eukaryotic DNA replication forks. EMBO J, 25, 1753–1763.

    CAS  PubMed  Google Scholar 

  • Kanemaki, M., Sanchez-Diaz, A., Gambus, A., and Labib, K. (2003) Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo. Nature, 423, 720–724.

    CAS  PubMed  Google Scholar 

  • Katou, Y., Kanoh, Y., Bando, M., Noguchi, H., Tanaka, H., Ashikari, T., Sugimoto, K., and Shirahige, K. (2003) S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature, 424, 1078–1083.

    CAS  PubMed  Google Scholar 

  • Kim, S., Dallmann, H. G., McHenry, C. S., and Marians, K. J. (1996) Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork movement. Cell, 84, 643–650.

    CAS  PubMed  Google Scholar 

  • Kneissl, M., Putter, V., Szalay, A. A., and Grummt, F. (2003) Interaction and assembly of murine pre-replicative complex proteins in yeast and mouse cells. J Mol Biol, 327, 111–128.

    CAS  PubMed  Google Scholar 

  • Kong, L., Ueno, M., Itoh, M., Yoshioka, K., and Takakura, N. (2006) Identification and characterization of mouse PSF1-binding protein, SLD5. Biochem Biophys Res Commun, 339, 1204–1207.

    CAS  PubMed  Google Scholar 

  • Kubota, Y., Takase, Y., Komori, Y., Hashimoto, Y., Arata, T., Kamimura, Y., Araki, H., and Takisawa, H. (2003) A novel ring-like complex of Xenopus proteins essential for the initiation of DNA replication. Genes Dev, 17, 1141–1152.

    CAS  PubMed  Google Scholar 

  • Kukimoto, I., Igaki, H., and Kanda, T. (1999) Human CDC45 protein binds to minichromosome maintenance 7 protein and the p70 subunit of DNA polymerase alpha. Eur J Biochem, 265, 936–943.

    CAS  PubMed  Google Scholar 

  • Kumagai, A. and Dunphy, W. G. (2000) Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol Cell Biol, 6, 839–849.

    CAS  Google Scholar 

  • Liu, P., Barkley, L. R., Day, T., Bi, X., Slater, D. M., Alexandrow, M. G., Nasheuer, H. P., and Vaziri, C. (2006) The Chk1-mediated S-phase checkpoint targets initiation factor Cdc45 via a Cdc25A/Cdk2-independent mechanism. J Biol Chem, 281, 30631–30644.

    CAS  PubMed  Google Scholar 

  • Loebel, D., Huikeshoven, H., and Cotterill, S. (2000) Localisation of the DmCdc45 DNA replication factor in the mitotic cycle and during chorion gene amplification. Nucleic Acids Res, 28, 3897–3903.

    CAS  PubMed  Google Scholar 

  • Machida, Y. J., Hamlin, J. L., and Dutta, A. (2005) Right place, right time, and only once: replication initiation in metazoans. Cell, 123, 13–24.

    CAS  PubMed  Google Scholar 

  • Makarova, K. S., Wolf, Y. I., Mekhedov, S. L., Mirkin, B. G., and Koonin, E. V. (2005) Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Res, 33, 4626–4638.

    CAS  PubMed  Google Scholar 

  • Mäkiniemi, M., Hillukkala, T., Tuusa, J., Reini, K., Vaara, M., Huang, D., Pospiech, H., Majuri, I., Westerling, T., Makela, T. P., and Syväoja, J. E. (2001) BRCT domain-containing protein TopBP1 functions in DNA replication and damage response. J Biol Chem, 276, 30399–30406.

    PubMed  Google Scholar 

  • Mann, M. B., Hodges, C. A., Barnes, E., Vogel, H., Hassold, T. J., and Luo, G. (2005) Defective sister-chromatid cohesion, aneuploidy and cancer predisposition in a mouse model of type II Rothmund-Thomson syndrome. Hum Mol Genet, 14, 813–825.

    CAS  PubMed  Google Scholar 

  • Marinsek, N., Barry, E. R., Makarova, K. S., Dionne, I., Koonin, E. V., and Bell, S. D. (2006) Gins, a central nexus in the archaeal DNA replication fork. EMBO Rep, 7, 539–545.

    CAS  PubMed  Google Scholar 

  • Masai, H., Taniyama, C., Ogino, K., Matsui, E., Kakusho, N., Matsumoto, S., Kim, J. M., Ishii, A., Tanaka, T., Kobayashi, T., Tamai, K., Ohtani, K., and Arai, K. (2006) Phosphorylation of MCM4 by Cdc7 kinase facilitates its interaction with Cdc45 on the chromatin. J Biol Chem, 281, 39249–39261.

    CAS  PubMed  Google Scholar 

  • Masai, H., You, Z., and Arai, K. (2005) Control of DNA replication: regulation and activation of eukaryotic replicative helicase, MCM. IUBMB Life, 57, 323–335.

    CAS  PubMed  Google Scholar 

  • Masuda, T., Mimura, S., and Takisawa, H. (2003) CDK- and Cdc45-dependent priming of the MCM complex on chromatin during S-phase in Xenopus egg extracts: possible activation of MCM helicase by association with Cdc45. Genes Cells, 8, 145–161.

    CAS  PubMed  Google Scholar 

  • Masumoto, H., Muramatsu, S., Kamimura, Y., and Araki, H. (2002) S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Nature, 415, 651–655.

    CAS  PubMed  Google Scholar 

  • Masumoto, H., Sugino, A., and Araki, H. (2000) Dpb11 controls the association between DNA polymerases alpha and epsilon and the autonomously replicating sequence region of budding yeast. Mol Cell Biol, 20, 2809–2817.

    CAS  PubMed  Google Scholar 

  • Matsunaga, F., Forterre, P., Ishino, Y., and Myllykallio, H. (2001) In vivo interactions of archaeal Cdc6/Orc1 and minichromosome maintenance proteins with the replication origin. Proc Natl Acad Sci USA, 98, 11152–11157.

    CAS  PubMed  Google Scholar 

  • Matsuno, K., Kumano, M., Kubota, Y., Hashimoto, Y., and Takisawa, H. (2006) The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase alpha in the initiation of DNA replication. Mol Cell Biol, 26, 4843–4852.

    CAS  PubMed  Google Scholar 

  • Mimura, S., Masuda, T., Matsui, T., and Takisawa, H. (2000) Central role for cdc45 in establishing an initiation complex of DNA replication in Xenopus egg extracts. Genes Cells, 5, 439–452.

    CAS  PubMed  Google Scholar 

  • Mimura, S. and Takisawa, H. (1998) Xenopus Cdc45-dependent loading of DNA polymerase alpha onto chromatin under the control of S-phase cdk. EMBO J, 17, 5699–5707.

    CAS  PubMed  Google Scholar 

  • Miyake, S. and Yamashita, S. (1998) Identification of sna41 gene, which is the suppressor of nda4 mutation and is involved in DNA replication in Schizosaccharomyces pombe. Genes Cells, 3, 157–166.

    CAS  PubMed  Google Scholar 

  • Moir, D., Stewart, S. E., Osmond, B. C., and Botstein, D. (1982) Cold-sensitive cell-division-cycle mutants of yeast: isolation, properties, and pseudoreversion studies. Genetics, 100, 547–563.

    CAS  PubMed  Google Scholar 

  • Mordes, D. A., Nam, E. A., and Cortez, D. (2008) Dpb11 activates the Mec1-Ddc2 complex. Proc Natl Acad Sci USA, 105, 18730–18734.

    CAS  PubMed  Google Scholar 

  • Moyer, S. E., Lewis, P. W., and Botchan, M. R. (2006) Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci USA, 103, 10236–10241.

    CAS  PubMed  Google Scholar 

  • Nakajima, R. and Masukata, H. (2002) SpSld3 is required for loading and maintenance of SpCdc45 on chromatin in DNA replication in fission yeast. Mol Biol Cell, 13, 1462–1472.

    CAS  PubMed  Google Scholar 

  • Navadgi-Patil, V. M. and Burgers, P. M. (2008) Yeast DNA replication protein Dpb11 activates the Mec1/ATR checkpoint kinase. J Biol Chem, 283, 35853–35859.

    CAS  PubMed  Google Scholar 

  • Nasheuer, H. P., Pospiech, H., and Syväoja, J. (2007) Progress towards the anatomy of the eukaryotic DNA replication fork. In: Lankenau, D. H. (Ed.) Genome Integrity: Facets and Perspectives, Genome Dynamics & Stability, Vol. 1, Springer, Berlin, Heidelberg, New York, pp. 27–68.

    Google Scholar 

  • Nasheuer, H. P., Smith, R., Bauerschmidt, C., Grosse, F., and Weisshart, K. (2002) Initiation of eukaryotic DNA replication: regulation and mechanisms. Prog Nucleic Acid Res Mol Biol, 72, 41–94.

    CAS  PubMed  Google Scholar 

  • Nitani, N., Nakamura, K., Nakagawa, C., Masukata, H., and Nakagawa, T. (2006) Regulation of DNA replication machinery by Mrc1 in fission yeast. Genetics, 174, 155–165.

    CAS  PubMed  Google Scholar 

  • Noguchi, E., Shanahan, P., Noguchi, C., and Russell, P. (2002) CDK phosphorylation of Drc1 regulates DNA replication in fission yeast. Curr Biol, 12, 599–605.

    CAS  PubMed  Google Scholar 

  • Oehlmann, M., Mahon, C., and Nasheuer, H. P. (2007) Comparison of DNA replication in Xenopus laevis and Simian Virus 40. Adv Exp Med Biol, 604, 3–16.

    PubMed  Google Scholar 

  • Osborn, A. J. and Elledge, S. J. (2003) Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev, 17, 1755–1767.

    CAS  PubMed  Google Scholar 

  • Owens, J. C., Detweiler, C. S., and Li, J. J. (1997) CDC45 is required in conjunction with CDC7/DBF4 to trigger the initiation of DNA replication. Proc Natl Acad Sci USA, 94, 12521–12526.

    CAS  PubMed  Google Scholar 

  • Pacek, M., Tutter, A. V., Kubota, Y., Takisawa, H., and Walter, J. C. (2006) Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell, 21, 581–587.

    CAS  PubMed  Google Scholar 

  • Pacek, M. and Walter, J. C. (2004) A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication. EMBO J, 23, 3667–3676.

    CAS  PubMed  Google Scholar 

  • Petersen, P., Chou, D. M., You, Z., Hunter, T., Walter, J. C., and Walter, G. (2006) Protein phosphatase 2A antagonizes ATM and ATR in a Cdk2- and Cdc7-independent DNA damage checkpoint. Mol Cell Biol, 26, 1997–2011.

    CAS  PubMed  Google Scholar 

  • Pollok, S., Bauerschmidt, C., Sänger, J., Nasheuer, H.-P., and Grosse, F. (2007) Human Cdc45 is a proliferation-associated antigen. FEBS J, 274, 3669–3684.

    CAS  PubMed  Google Scholar 

  • Pollok, S. and Grosse, F. (2007) Cdc45 degradation during differentiation and apoptosis. Biochem Biophys Res Commun, 362, 910–915.

    CAS  PubMed  Google Scholar 

  • Pollok, S., Stoepel, J., Bauerschmidt, C., Kremmer, E., and Nasheuer, H. P. (2003) Regulation of eukaryotic DNA replication at the initiation step. Biochem Soc Trans, 31, 266–269.

    CAS  PubMed  Google Scholar 

  • Pulliam, K. F., Fasken, M. B., McLane, L. M., Pulliam, J. V., and Corbett, A. H. (2009) The classical nuclear localization signal receptor, importin-alpha, is required for efficient transition through the G1/S stage of the cell cycle in Saccharomyces cerevisiae. Genetics, 181, 105–118.

    CAS  PubMed  Google Scholar 

  • Ramachandran, N., Hainsworth, E., Bhullar, B., Eisenstein, S., Rosen, B., Lau, A. Y., Walter, J. C., and Labaer, J. (2004) Self-assembling protein microarrays. Science, 305, 86–90.

    CAS  PubMed  Google Scholar 

  • Reid, R. J., Fiorani, P., Sugawara, M., and Bjornsti, M. A. (1999) CDC45 and DPB11 are required for processive DNA replication and resistance to DNA topoisomerase I-mediated DNA damage. Proc Natl Acad Sci USA, 96, 11440–11445.

    CAS  PubMed  Google Scholar 

  • Rodriguez, M. C. and Songyang, Z. (2008) BRCT domains: phosphopeptide binding and signaling modules. Front Biosci, 13, 5909–5915.

    Google Scholar 

  • Saha, P., Thome, K. C., Yamaguchi, R., Hou, Z., Weremowicz, S., and Dutta, A. (1998) The human homolog of Saccharomyces cerevisiae CDC45. J Biol Chem, 273, 18205–18209.

    CAS  PubMed  Google Scholar 

  • Saka, Y., Fantes, P., Sutani, T., McInerny, C., Creanor, J., and Yanagida, M. (1994) Fission yeast cut5 links nuclear chromatin and M phase regulator in the replication checkpoint control. EMBO J, 13, 5319–5329.

    CAS  PubMed  Google Scholar 

  • Saka, Y. and Yanagida, M. (1993) Fission yeast cut5+, required for S phase onset and M phase restraint, is identical to the radiation-damage repair gene rad4+. Cell, 74, 383–393.

    CAS  PubMed  Google Scholar 

  • Sangrithi, M. N., Bernal, J. A., Madine, M., Philpott, A., Lee, J., Dunphy, W. G., and Venkitaraman, A. R. (2005) Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome. Cell, 121, 887–898.

    CAS  PubMed  Google Scholar 

  • Sawyer, S. L., Cheng, I. H., Chai, W., and Tye, B. K. (2004) Mcm10 and Cdc45 cooperate in origin activation in Saccharomyces cerevisiae. J Mol Biol, 340, 195–202.

    CAS  PubMed  Google Scholar 

  • Schmidt, U., Wollmann, Y., Franke, C., Grosse, F., Saluz, H.-P., and Hänel, F. (2008) Characterization of the interaction between the human DNA topoisomerase IIbeta-binding protein 1 (TopBP1) and the cell division cycle 45 (Cdc45) protein. Biochem J, 409, 169–177.

    CAS  PubMed  Google Scholar 

  • Sclafani, R. A. and Holzen, T. M. (2007) Cell cycle regulation of DNA replication. Annu Rev Genet, 41, 237–280.

    CAS  PubMed  Google Scholar 

  • Shaikh, T. H., Gottlieb, S., Sellinger, B., Chen, F., Roe, B. A., Oakey, R. J., Emanuel, B. S., and Budarf, M. L. (1999) Characterization of CDC45L: a gene in the 22q11.2 deletion region expressed during murine and human development. Mamm Genome, 10, 322–326.

    CAS  PubMed  Google Scholar 

  • Shechter, D., Costanzo, V., and Gautier, J. (2004) Regulation of DNA replication by ATR: signaling in response to DNA intermediates. DNA Repair (Amst), 3, 901–908.

    CAS  Google Scholar 

  • Shechter, D. and Gautier, J. (2005) ATM and ATR check in on origins: a dynamic model for origin selection and activation. Cell Cycle, 4, 235–238.

    CAS  PubMed  Google Scholar 

  • Sherr, C. J. and Roberts, J. M. (2004) Living with or without cyclins and cyclin-dependent kinases. Genes Dev, 18, 2699–2711.

    CAS  PubMed  Google Scholar 

  • Stevens, R., Grelon, M., Vezon, D., Oh, J., Meyer, P., Perennes, C., Domenichini, S., and Bergounioux, C. (2004) A CDC45 homolog in Arabidopsis is essential for meiosis, as shown by RNA interference-induced gene silencing. Plant Cell, 16, 99–113.

    CAS  PubMed  Google Scholar 

  • Tak, Y. S., Tanaka, Y., Endo, S., Kamimura, Y., and Araki, H. (2006) A CDK-catalysed regulatory phosphorylation for formation of the DNA replication complex Sld2-Dpb11. EMBO J, 25, 1987–1996.

    CAS  PubMed  Google Scholar 

  • Takayama, Y., Kamimura, Y., Okawa, M., Muramatsu, S., Sugino, A., and Araki, H. (2003) Gins, a novel mulTiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev, 17, 1153–1165.

    CAS  PubMed  Google Scholar 

  • Tanaka, S., Tak, Y. S., and Araki, H. (2007a) The role of CDK in the initiation step of DNA replication in eukaryotes. Cell Div, 2, 16.

    PubMed  Google Scholar 

  • Tanaka, S., Umemori, T., Hirai, K., Muramatsu, S., Kamimura, Y., and Araki, H. (2007b) CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature, 445, 328–332.

    CAS  PubMed  Google Scholar 

  • Tercero, J. A., Labib, K., and Diffley, J. F. (2000) DNA synthesis at individual replication forks requires the essential initiation factor Cdc45p. EMBO J, 19, 2082–2093.

    CAS  PubMed  Google Scholar 

  • Tourrière, H. and Pasero, P. (2007) Maintenance of fork integrity at damaged DNA and natural pause sites. DNA Repair (Amst), 6, 900–913.

    Google Scholar 

  • Tourrière, H., Versini, G., Cordon-Preciado, V., Alabert, C., and Pasero, P. (2005) Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53. Mol Cell, 19, 699–706.

    PubMed  Google Scholar 

  • Uchiyama, M., Arai, K., and Masai, H. (2001a) Sna41goa1, a novel mutation causing G1/S arrest in fission yeast, is defective in a CDC45 homolog and interacts genetically with polalpha. Mol Genet Genomics, 265, 1039–1049.

    CAS  PubMed  Google Scholar 

  • Uchiyama, M., Griffiths, D., Arai, K., and Masai, H. (2001b) Essential role of Sna41/Cdc45 in loading of DNA polymerase alpha onto minichromosome maintenance proteins in fission yeast. J Biol Chem, 276, 26189–26196.

    CAS  PubMed  Google Scholar 

  • Ueno, M., Itoh, M., Kong, L., Sugihara, K., Asano, M., and Takakura, N. (2005) PSF1 is essential for early embryogenesis in mice. Mol Cell Biol, 25, 10528–10532.

    CAS  PubMed  Google Scholar 

  • Ueno, M., Itoh, M., Sugihara, K., Asano, M., and Takakura, N. (2009) Both alleles of PSF1 are required for maintenance of pool size of immature hematopoietic cells and acute bone marrow regeneration. Blood, 113, 555–562.

    CAS  PubMed  Google Scholar 

  • van Hatten, R. A., Tutter, A. V., Holway, A. H., Khederian, A. M., Walter, J. C., and Michael, W. M. (2002) The Xenopus Xmus101 protein is required for the recruitment of Cdc45 to origins of DNA replication. J Cell Biol, 159, 541–547.

    PubMed  Google Scholar 

  • Vogelauer, M., Rubbi, L., Lucas, I., Brewer, B. J., and Grunstein, M. (2002) Histone acetylation regulates the time of replication origin firing. Mol Cell, 10, 1223–1233.

    CAS  PubMed  Google Scholar 

  • Wang, H. and Elledge, S. J. (1999) DRC1, DNA replication and checkpoint protein 1, functions with DPB11 to control DNA replication and the S-phase checkpoint in Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 96, 3824–3829.

    CAS  PubMed  Google Scholar 

  • Weinreich, M. and Stillman, B. (1999) Cdc7p-Dbf4p kinase binds to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway. EMBO J, 18, 5334–5346.

    CAS  PubMed  Google Scholar 

  • Wollmann, Y., Schmidt, U., Wieland, G. D., Zipfel, P. F., Saluz, H.-P., and Hänel, F. (2007) The DNA topoisomerase IIbeta binding protein 1 (TopBP1) interacts with poly (ADP-ribose) polymerase (PARP-1). J Cell Biochem, 102, 171–182.

    CAS  PubMed  Google Scholar 

  • 120. Xu, X. and Liu, Y. (2009) Dual DNA unwinding activities of the Rothmund-Thomson syndrome protein, RECQ4. EMBO J, Epub ahead of print, doi: 10.1038/emboj.

    Google Scholar 

  • Yabuuchi, H., Yamada, Y., Uchida, T., Sunathvanichkul, T., Nakagawa, T., and Masukata, H. (2006) Ordered assembly of Sld3, GINS and Cdc45 is distinctly regulated by DDK and CDK for activation of replication origins. EMBO J, 25, 4663–4674.

    CAS  PubMed  Google Scholar 

  • Yamada, Y., Nakagawa, T., and Masukata, H. (2004) A novel intermediate in initiation complex assembly for fission yeast DNA replication. Mol Biol Cell, 15, 3740–3750.

    CAS  PubMed  Google Scholar 

  • Yamane, K. and Tsuruo, T. (1999) Conserved BRCT regions of TopBP1 and of the tumor suppressor BRCA1 bind strand breaks and termini of DNA. Oncogene, 18, 5194–5203.

    CAS  PubMed  Google Scholar 

  • Yoshida, K., Kuo, F., George, E. L., Sharpe, A. H., and Dutta, A. (2001) Requirement of CDC45 for postimplantation mouse development. Mol Cell Biol, 21, 4598–4603.

    CAS  PubMed  Google Scholar 

  • Yoshimochi, T., Fujikane, R., Kawanami, M., Matsunaga, F., and Ishino, Y. (2008) The GINS complex from Pyrococcus furiosus stimulates the MCM helicase activity. J Biol Chem, 283, 1601–1609.

    CAS  PubMed  Google Scholar 

  • Zegerman, P. and Diffley, J. F. (2007) Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature, 445, 281–285.

    CAS  PubMed  Google Scholar 

  • Zhu, W., Ukomadu, C., Jha, S., Senga, T., Dhar, S. K., Wohlschlegel, J. A., Nutt, L. K., Kornbluth, S., and Dutta, A. (2007) Mcm10 and And-1/CTF4 recruit DNA polymerase alpha to chromatin for initiation of DNA replication. Genes Dev, 21, 2288–2299.

    CAS  PubMed  Google Scholar 

  • Zou, L., Mitchell, J., and Stillman, B. (1997) CDC45, a novel yeast gene that functions with the origin recognition complex and MCM proteins in initiation of DNA replication. Mol Cell Biol, 17, 553–563.

    CAS  PubMed  Google Scholar 

  • Zou, L. and Stillman, B. (2000) Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase. Mol Cell Biol, 20, 3086–3096.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca M. Pisani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pospiech, H., Grosse, F., Pisani, F.M. (2010). The Initiation Step of Eukaryotic DNA Replication. In: Nasheuer, HP. (eds) Genome Stability and Human Diseases. Subcellular Biochemistry, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3471-7_5

Download citation

Publish with us

Policies and ethics