Skip to main content

Relations of Environmental Change to Angiosperm Evolution During the Late Cretaceous and Tertiary

  • Chapter
Book cover Evolution and Diversification of Land Plants

Abstract

That morphology of the vegetative body of plants has been—and is continuing to be—shaped by environmental factors is a generally accepted concept. If so, then environmental change must be a significant factor in morphological change in plants. Morphological (used here in the broad sense to include anatomical) change can be equated to evolutionary change, at least relative to the vegetative body of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  2. Bailey IW, Sinnott EW (1915) A botanical index of Cretaceous and Tertiary climates. Science 41:831–834

    Article  PubMed  CAS  Google Scholar 

  3. Richards PW (1952) The tropical rain forest. Cambridge University Press, Cambridge

    Google Scholar 

  4. Spicer RA (1989) Physiological characteristics of land plants in relation to climate through time. Trans R Soc Edinb 80:321–329

    Article  Google Scholar 

  5. Dolph GE, Dilcher DL (1979) Foliar physiognomy as an aid in determining paleoclimate. Palaeontogr Abt B Palaeophytol 170:151–172

    Google Scholar 

  6. Wolfe JA (1993) A method for obtaining climatic parameters from leaf assemblages. U.S. Bull 2040, Geological Survey, Washington, DC

    Google Scholar 

  7. Dilcher DL (1973) A paleoclimatic interpretation of the Eocene floras of southeastern North America. In: Graham A (ed) Vegetation and vegetational history of northern Latin America. Elsevier, Amsterdam, pp 39–59

    Google Scholar 

  8. Wheeler EF, Baas P (1991) A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. Int Assoc Wood Anat Bull 12:275–332

    Google Scholar 

  9. Wolfe JA (1995) Paleoclimatic estimates for Tertiary leaf assemblages. Annu Rev Earth Planet Sci 24:119–142

    Article  Google Scholar 

  10. ter Braak CJF (1992) CANOCO—a FORTRAN program for canonical correspondence ordination. Microcomputer Power, Ithaca, NY

    Google Scholar 

  11. ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–371

    Article  Google Scholar 

  12. Herman AB, Spicer RA (1996) Palaeobotanical evidence for a warm Cretaceous Arctic Ocean. Nature 330:330–333

    Article  Google Scholar 

  13. Doyle JA, Donoghue MJ (1986) Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Bot Rev 52:321–431

    Article  Google Scholar 

  14. Axelrod DI (1952) A theory of angiosperm evolution. Evolution 6:29–30

    Article  Google Scholar 

  15. Crane PR (1987) Vegetational consequence of the angiosperm diversification. In: Friis EM, Chaloner WG, Crane PR (eds) The origin of angiosperms and their biological consequences. Cambridge University Press, Cambridge, pp 107–144

    Google Scholar 

  16. Crane PR (1989) Paleobotanical evidence on the early radiation of nonmagnoliid dicotyledons. Plant Syst Evol 162:165–191

    Article  Google Scholar 

  17. Upchurch GR, Wolfe JA (1993) Cretaceous vegetation of the Western Interior and adjacent regions of North America. Geol Assoc Canada Spec Pap 39:243–281

    Google Scholar 

  18. Hickey LJ, Wolfe JA (1975) The bases of angiosperm phylogeny: vegetative morphology. Ann MO Bot Gard 62:538–589

    Article  Google Scholar 

  19. Wolfe JA, Doyle JA, Page VM (1975) The bases of angiosperm phylogeny: paleobotany. Ann MO Bot Gard 62:801–824

    Article  Google Scholar 

  20. Doyle JA, Hickey LJ (1976) Pollen and leaves from the mid-Cretaceous Potomac group and their bearing on early angiosperm evolution In: Beck CB (ed) Origin and early evolution of angiosperms. Columbia University Press, New York, pp 139–206

    Google Scholar 

  21. Muller J (1981) Fossil pollen records of extant angiosperms. Bot Rev 47:1–142

    Article  Google Scholar 

  22. Stockey RA, Hoffman GL, Rothwell GW (1997) The fossil monocot Limnobiophyllum scutatum (Dawson) Krassilov: resolving phylogeny of the Lemnaceae. Am J Bot 84:355–368

    Article  PubMed  CAS  Google Scholar 

  23. MacNeal DL (1958) The flora of the Upper Cretaceous Woodbine Sand in Denton County, Texas. Monogr Acad Nat Sci Phila 10:1–152

    Google Scholar 

  24. Newberry JS (1895) The flora of the Amboy clays. Monograph 26. U.S. Geological Survey, Washington, DC

    Google Scholar 

  25. Smith AG, Smith DG, Funnell BM (1994) Atlas of Mesozoic and Cenozoic coastlines. Cambridge University Press, Cambridge

    Google Scholar 

  26. Wolfe JA, Upchurch GR (1987) North American nonmarine climates during the Late Cretaceous. Palaeogeogr Palaeoclimatol Palaeoecol 61:33–77

    Article  Google Scholar 

  27. Crepet WL, Friis EM, Nixon KC (1991) Fossil evidence for the evolution of biotic pollination. Philos Trans R Soc Lond B Biol Sci 333:187–195

    Article  Google Scholar 

  28. Upchurch GR, Dilcher DL (1990) Cenomanian angiosperm leaf megafossils, Dakota Formation, Rose Creek locality, Jefferson County, southeastern Nebraska. U.S. Bull 1915, Geological Survey, Washington, DC

    Google Scholar 

  29. Doyle JA (1969) Cretaceous angiosperm pollen of the Atlantic Coastal Plain and its evolutionary significance. J Arnold Arbor Hary Univ 50:1–35

    Google Scholar 

  30. Friis EM (1983) Upper Cretaceous (Senonian) floral structure of juglandalean affinity containing Normapolles pollen. Rev Palaeobot Palynol 39:161–188

    Article  Google Scholar 

  31. Wolfe JA (1974) Fossil forms of Amentiferae. Brittonia 25:334–355

    Article  Google Scholar 

  32. Wolfe JA (1976) Stratigraphic distribution of some pollen types from the Campanian and lower Maestrichtian rocks (Upper Cretaceous) of the Middle Atlantic States. U.S. Prof pap 977, Geological Survey, Washington, DC

    Google Scholar 

  33. Herman AB (1994) Late Cretaceous Arctic platanoids and high latitude climate. In: Boulter MC, Fisher HC (eds) Cenozoic plants and climates of the Arctic. Springer, Berlin, Heidelberg New York, pp 151–159

    Chapter  Google Scholar 

  34. Spicer RA, Wolfe JA, Nichols DJ (1987) Alaskan Cretaceous-Tertiary floras and Arctic origins. Paleobiology 13:73–83

    Google Scholar 

  35. Wolfe JA (1991) Palaeobotanical evidence for a June “impact winter” at the Cretaceous-Tertiary boundary. Nature 352:420–423

    Article  Google Scholar 

  36. Alvarez W, Claeys P, Kieffer SW (1995) Emplacement of Cretaceous-Tertiary boundary shocked quartz from Chicxulub Crater. Science 269:930–935

    Article  PubMed  CAS  Google Scholar 

  37. Sharpton VL, Ward PD (eds) (1990) Global catastrophes in Earth history. Geol Soc Am Spec Pap 247

    Google Scholar 

  38. Silver LT, Schultz PH (eds) (1982) Geological implications of large asteroids and comets on the Earth. Geol Soc Am Spec Pap 190

    Google Scholar 

  39. Wolfe JA (1990) Palaeobotanical evidence for a marked temperature increase following the Cretaceous-Tertiary boundary. Nature 343:153–156

    Article  Google Scholar 

  40. Upchurch GR (1989) Terrestrial environmental change and extinction patterns at the Cretaceous-Tertiary boundary, North America. In: Donovan SK (ed) Mass extinctions: processes and evidence. Columbia University Press, New York, pp 195–216

    Google Scholar 

  41. Lerbekmo JF, Sweet AR, St Louis RM (1987) The relationship between the itidium anomaly and palynological floral events at three Cretaceous-Tertiary boundary localities in western Canada. Geol Soc Am Bull 99:325–330

    Article  CAS  Google Scholar 

  42. Nichols DJ, Fleming RF (1990) Plant microfossil record of the terminal Cretaceous event in the western United States and Canada. Geol Soc Am Spec Pap 247: 445–455

    Google Scholar 

  43. Johnson KR, Hickey LJ (1990) Megafloral change across the Cretaceous/Tertiary boundary in the northern Great Plains and Rocky Mountains, USA. Geol Soc Am Spec Pap 247:433–444

    Google Scholar 

  44. Frederiksen NO (1989) Changes in floral diversities, floral turnover rates, and climates in Campanian and Maastrichtian time, North Slope of Alaska. Cretaceous Res 10:249–266

    Article  Google Scholar 

  45. Brown RW (1962) Paleocene flora of the Rocky Mountains and Great Plains. Prof pap 375, U.S. Geological Survey, Washington, DC

    Google Scholar 

  46. Koch BE (1963) Fossil plants from the Lower Paleocene of the Agatdalen (Angmartussut area, central Nûgssuaq Peninsula, northwest Greenland. Meded Grønl 172(5):1–120

    Google Scholar 

  47. Boulter MC, Kvacek Z (1989) The Palaeocene flora of the Isle of Mull. Palaeontol Assoc Spec Pap Palaeontol 42

    Google Scholar 

  48. McIver EE, Basinger JF (1993) Flora of the Ravenscarg Formation (Paleocene), southwestern Saskatchewan, Canada. Palaeontogr Can 10

    Google Scholar 

  49. Saporta G, Marion AF (1878) Revision de la fore heersiennne de Gelinden. Acad R Belg Mém Cour Say 41

    Google Scholar 

  50. Berry EW (1916) The lower Eocene floras of southeastern North America. Prof pap 91, U.S. Geological Survey, Washington, DC

    Book  Google Scholar 

  51. Knowlton FH (1917) Fossil floras of the Vermejo and Raton formations of Colorado and New Mexico. US Geol Sury Prof Pap 101:223–455

    Google Scholar 

  52. Chandler MEJ (1961) The Lower Tertiary floras of southern England. I. Br Mus (Nat Hist)

    Google Scholar 

  53. Chandler MEJ (1964) The Lower Tertiary floras of southern England. IV. Br Mus (Nat Hist)

    Google Scholar 

  54. Crane PR (1981) Betulaceous leaves and fruits from the British Upper Palaeocene. Bot J Linn Soc 83:103–136

    Article  Google Scholar 

  55. Haq BU, Hardenbol UJ, Vail PR (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In: Wilgus CK, Hastings BS, St C Kendall CG, Posamentier HW, Ross CA, Wagoner JC (eds) Sea-level changes: an integrated approach. Soc Econ Paleontol Mineral Spec Pub142:71–108

    Google Scholar 

  56. Adegoke OS, Jan du Cheêne RE, Agumanu AE (1978) Palynology and age of the Kerri-Kerri Formation, Nigeria. Rev Esp Micropaleontol 10:267–283

    Google Scholar 

  57. Herendeen PS, Crepet WL, Dilcher DL (1992) The fossil history of the Leguminosae: phylogenetic and biogeographic implications In: Herendeen PS, Dilcher DL (eds) Advances in legume systematics. Part 4. The fossil record. Royal Botanical Gardens, Kew, pp 303–316

    Google Scholar 

  58. Rea DK, Zachos JC, Owen RM, Gingerich PD (1990) Global change at the Paleocene-Eocene boundary: climatic and evolutionary consequences of tectonic events. Palaeogeogr Palaeoclimatol Palaeoecol 79:117–128

    Article  Google Scholar 

  59. Wolfe JA (1985) Distribution of major vegetational types during the Tertiary. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations Archean to present. Monogr 32. American Geophysical Union, Washington, DC, pp 357–376

    Chapter  Google Scholar 

  60. Tiffney BH (1985) Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. J Arnold Arbor Hary Univ 66:73–94

    Google Scholar 

  61. Tiffney BH (1985) The Eocene North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the Northern Hemisphere. J Arnold Arbor Hary Univ 66:243–273

    Google Scholar 

  62. Budantsev LY (1994) The fossil flora of the Paleogene climatic optimum in northeastern Asia. In: Boulter MC, Fisher HC (eds) Cenozoic plants and climates of the Arctic. Springer, Berlin Heidelberg New York, pp 297–313

    Chapter  Google Scholar 

  63. Wolfe JA (1975) Some aspects of plant geography of the Northern Hemisphere during the Late Cretaceous and Tertiary. Ann MO Bot Gard 62:264–279

    Article  Google Scholar 

  64. Lavin M, Luckow M (1993) Origins and relationships of tropical North America in the context of the boreotropical hypothesis. Am J Bot 80:1–14

    Article  Google Scholar 

  65. Reid EM, Chandler MEJ (1933) The flora of the London Clay. Br Mus (Nat Hist)

    Google Scholar 

  66. Wolfe JA, Tanai T (1987) Systematics, phylogeny, and distribution of Acer (maples) in the Cenozoic of western North America. J Fac Sci Hokkaido Univ Ser V Bot 22:1–246

    Google Scholar 

  67. Manchester SR (1994) Fruits and seeds of the middle Eocene Nut Beds flora, Clarno Formation, Oregon. Palaeontogr Am 58:205

    Google Scholar 

  68. Graham A, Dilcher DL (1995) The Cenozoic record of tropical dry forest in northern Latin America and the southern United States. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 124–145

    Chapter  Google Scholar 

  69. Guo S (1980) Late Cretaceous and Eocene floral provinces. Academia Sinica (Nanjing) Inst Geol Paleontol Rep, p 9

    Google Scholar 

  70. Wolfe JA (1988) An overview of the origins of the modern vegetation and flora of the northern Rocky Mountains. Ann MO Bot Gard 74:785–803

    Article  Google Scholar 

  71. Engler A (1882) Versuch einer Entwicklungsgeschichte der extratropischen florengebiete der südlichen Hemisphare and der tropischen gebiete. Engelmann, Leipzig

    Google Scholar 

  72. Wolfe JA (1992) Climatic, floristic, and vegetational changes near the Eocene/Oligocene boundary in North America. In: Prothero DR, Berggren WA (eds) Eoceneoligocene climatic and biotic evolution. Princeton University Press, Princeton, pp 421–436

    Google Scholar 

  73. Wolfe JA (1994) Tertiary climatic changes at middle latitudes of western North America. Palaeogeogr Palaeoclimatol Palaeoecol 108:95–105

    Article  Google Scholar 

  74. Owens JP, Bybel LM, Paulachok G, Ager TA, Gonzalez VM, Sugarman PJ (1988) Stratigraphy of the Tertiary sediments in a 945-foot-deep corehole near Mays Landing in the southeastern New Jersey Coastal Plain. Prof pap 1484. U.S. Geological Survey, Washington, DC

    Google Scholar 

  75. McClammer JU (1978) Paleobotany and stratigraphy of the Yaquina Flora (latest Oligocene—earliest Miocene) of western Oregon. Master’s thesis, University of Maryland, College Park

    Google Scholar 

  76. MacGinitie HD (1937) The flora of the Weaverville beds of Trinity County, California. Carnegie Inst Washington Publ 465:84–156

    Google Scholar 

  77. Mai DH (1981) Entwicklung und klimatische Differenzierung der Laubwaldflora Mitteleuropas im Tertiär. Flora (Jena) 171:525–582

    Google Scholar 

  78. Wing SL, Hickey LJ, Swisher CC (1993) Implications of an exceptional fossil flora for Late Cretaceous vegetation. Nature 363:342–344

    Article  Google Scholar 

  79. Leopold EB, Liu G, Clay-Poole S (1992) Low-biomass vegetation in the Oligocene? In: Prothero DR, Berggren WA (eds) Eocene-Oligocene climatic and biotic evolution. Princeton University Press, Princeton, pp 382–398

    Google Scholar 

  80. Retallack GJ (1992) Paleosols and changes in climate and vegetation acreoss the Eocene/Oligocene boundary. In: Prothero DR, Berggren WA (eds) Eoceneoligocene climatic and biotic evolution. Princeton University Press, Princeton, pp 382–398

    Google Scholar 

  81. Wolfe JA (1994) A preliminary analysis of Neogene climates in Beringia. Palaeogeogr Palaeoclimatol Palaeoecol 108:107–115

    Google Scholar 

  82. Chaney RW (1959) Miocene floras of the Columbia Plateau, composition and interpretation. Carnegie Inst Washington Publ 617:1–134

    Google Scholar 

  83. Tanai T (1992) Tertiary vegetational history of East Asia. Mizunami Fossil Mus Bull 19:125–163

    Google Scholar 

  84. Kvacek Z (1994) Connecting links between the Arctic Palaeogene and European Tertiary floras. In: Boulter MC, Fisher HC (eds) Cenozoic plants and climates of the Arctic. Springer, Berlin Heidelberg New York, pp 251–166

    Chapter  Google Scholar 

  85. Graham A (1995) Development and affinities between Mexican/Central American and northern South American lowland and lower montane vegetation during the Tertiary. In: Churchill SP, et al (eds) Biodiversity and conservation of neotropical montane forests. New York Botanical Garden, New York, pp 11–22

    Google Scholar 

  86. Wolfe JA (1994) Alaskan Palaeogene climates as inferred from the CLAMP database. In: Boulter MC, Fisher HC (eds) Cenozoic plants and climates of the Arctic. Springer, Berlin Heidelberg New York, pp 223–237

    Chapter  Google Scholar 

  87. Takhtajan AL (1980) Outline of the classification of flowering plants (Magnoliophyta). Bot Rev 46:225–359

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Tokyo

About this chapter

Cite this chapter

Wolfe, J.A. (1997). Relations of Environmental Change to Angiosperm Evolution During the Late Cretaceous and Tertiary. In: Iwatsuki, K., Raven, P.H. (eds) Evolution and Diversification of Land Plants. Springer, Tokyo. https://doi.org/10.1007/978-4-431-65918-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-65918-1_13

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-65920-4

  • Online ISBN: 978-4-431-65918-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics