Skip to main content

L-type calcium channel antagonist nifedipine reduces neurofilament restitution following traumatic optic nerve injury

  • Conference paper
Mechanisms of Secondary Brain Damage from Trauma and Ischemia

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 89))

  • 185 Accesses

Abstract

Background. The aim of the present study was to observe if the use of the L-type calcium channel antagonist nifedipine would offer advantages for the retinal ganglion cells and the restitution of the axonal cytoskeleton after optic nerve crush.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmed N, Nasman P, Wahlgren NG (2000) Effect of intravenous nimodipine on blood pressure and outcome after acute stroke. Stroke 31: 1250–1255

    Article  CAS  PubMed  Google Scholar 

  2. Berridge MJ, Bootman MD, Lipp P (1998) Calcium — a life and death signal Nature 395: 645–648

    Article  CAS  PubMed  Google Scholar 

  3. Bien A, Seidenbecher CI, Bockers TM, Säbel BA, Kreutz MR (1999) Apoptotic versus necrotic characteristics of retinal ganglion cell death after partial optic nerve injury. J Neurotrauma 16: 153–163

    Article  CAS  PubMed  Google Scholar 

  4. Chesnut RM, Carney N, Maynard H, Mann NC, Patterson P. Helfand M (1999) Summary report: evidence for the effectiveness of rehabilitation for persons with traumatic brain injury. J Head Trauma Rehabil 14: 176–188

    Article  CAS  PubMed  Google Scholar 

  5. Duvdevani R, Rosner M, Belkin M, Sautter J, Säbel BA (1990) Graded crush of the rat optic nerve as a brain injury model: combining electrophysiological and behavioral out-come. Restor Neurol Neurosci 2: 31–38

    CAS  PubMed  Google Scholar 

  6. Gennarelli TA, Adams JH, Graham DI (1986) Diffuse axonal injury. A new conceptual approach to an old problem. In: Baetmann A, Go, Unterberg A (eds) Mechanisms of secondary brain damage. Plenum, New York, pp 15–28

    Chapter  Google Scholar 

  7. Hanke J, Schröder U, Säbel BA (2000) Internal axon repair after optic nerve crush in adult rats. Rest Neurol Neurosci 16: 225

    Google Scholar 

  8. Hanke J, Schröder U, Nahmmacher V, Sabel BA (2001): Repair of internal axon damage following traumatic optic nerve injury. Ann Anatomy [Suppl] 183

    Google Scholar 

  9. Hossmann KA, Paschen W, Csiba L (1983) Relationship between calcium accumulation and recovery of cat brain after prolonged cerebral ischemia. J Cereb Blood Flow Metab 3: 346–353

    Article  CAS  PubMed  Google Scholar 

  10. Julien JP, Mushynski WE (1998) Neurofilaments in health and disease. Prog Nucleic Acid Res Mol Biol 61: 1–23

    Article  CAS  PubMed  Google Scholar 

  11. Kasten E, Wuest S, Sabel BA (1998) Residual vision in transition zones in patients with cerebral blindness. J Clin Exp Neuropsychol 20: 581–598

    Article  CAS  PubMed  Google Scholar 

  12. Maxwell WL, Povlishock JT, Graham DL (1997) A mechanistic analysis of nondisruptive axonal injury: a review. J Neurotrauma 14: 419–440

    Article  CAS  PubMed  Google Scholar 

  13. Mayor HD, Hampton JC, Rosario B (1961) A simple method for removing the resin from epoxy embedded tissue. J Cell Biol 9: 909–910

    Article  CAS  Google Scholar 

  14. McClellan AD, McPherson D, O’Donovan MJ (1994) Combined retrograde labelling and calcium imaging in spinal cord and brainstem neurons of the lamprey. Brain Res 663: 61–68

    Article  CAS  PubMed  Google Scholar 

  15. McKerracher L, Hirscheimer A (1992) Slow transport of the cytoskeleton after axonal injury. J Neurobiol 23: 568–578

    Article  CAS  PubMed  Google Scholar 

  16. McPherson DR, McClellan AD, O’Donovan MJ (1997) Optical imaging of neuronal activity in tissue labeled by retrograde transport of Calcium Green Dextran. Brain Res 1: 157–164

    CAS  Google Scholar 

  17. Mohr JP, Mast H, Thompson JL, Sacco RL (1998) Are more complex study designs needed for future acute stroke trials? Cerebrovasc Dis 8 [Suppl] 1: 17–22

    Article  PubMed  Google Scholar 

  18. O’Donovan MJ, Ho S, Sholomenko G, Yee W (1993) Real-time imaging of neurons retrogradely and anterogradely labelled with calcium-sensitive dyes. J Neurosci Methods 46: 91–106

    Article  PubMed  Google Scholar 

  19. Pantoni L, Garcia JH, Gutierrez JA (1996) Cerebral white matter is highly vulnerable to ischemia. Stroke 27: 1641–1646

    Article  CAS  PubMed  Google Scholar 

  20. Posmantur R, Hayes RL, Dixon CE, Taft WC (1994) Neurofilament 68 and neurofilament 200 protein levels decrease after traumatic brain injury. J Neurotrauma 11: 533–545

    Article  CAS  PubMed  Google Scholar 

  21. Povlishock JT, Erb DE, Astruc J (1992) Axonal response to traumatic brain injury: reactive axonal change, deafferentation, and neuroplasticity. J Neurotrauma 9 [Suppl] 1: SI 89–S200

    Google Scholar 

  22. Povlishock JT, Christman CW (1995) The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts. J Neurotrauma 12: 555–564

    Article  CAS  PubMed  Google Scholar 

  23. Povlishock JT, Marmarou A, Mclntosh T, Trojanowski JQ, Moroi J (1997) Impact acceleration injury in the rat: evidence for focal axolemmal change and related neurofilament sidearm alteration. J Neuropathol Exp Neurol 56: 347–359

    CAS  PubMed  Google Scholar 

  24. Raghupathi R, Mclntosh TK (1998) Pharmacotherapy for traumatic brain injury: a review. Proc West Pharmacol Soc 41: 241–246

    CAS  PubMed  Google Scholar 

  25. Rousseau V, Engelmann R, Sabel BA (1999) Restoration of vision III: soma swelling dynamics predicts neuronal death or survival after optic nerve crush in vivo. Neuroreport 10: 3387–3391

    Article  CAS  PubMed  Google Scholar 

  26. Rousseau V, Tietgens H, Rohatgi T, Hanke J, Sabel BA (2000) Adaptive versus lethal calciumactivity rise in retinal ganglion cells after optic nerve crush. Rest Neurol Neurosci 16: 66

    Google Scholar 

  27. Saatman KE, Graham DI, Mclntosh TK (1998) The neuronal cytoskeleton is at risk after mild and moderate brain injury. J Neurotrauma 15: 1047–1058

    Article  CAS  PubMed  Google Scholar 

  28. Sabel BA, Engelmann R, Humphrey MF (1997a) In vivo confocal neuroimaging (ICON) of CNS neurones. Nature Med 3: 244–247

    Article  CAS  PubMed  Google Scholar 

  29. Sabel BA, Kasten E, Kreutz MR (1997b) Recovery of vision after partial visual system injury as a model of post-lesion neuroplasticity. Adv Neurol 73: 251–276

    CAS  PubMed  Google Scholar 

  30. Sautter J, Sabel BA (1993) Recovery of brightness discrimination in adult rats despite progressive loss of retrogradely labelled retinal ganglion cells after controlled optic nerve crush. Europ J Neurosci 5: 680–690

    Article  CAS  Google Scholar 

  31. Simon RP, Griffiths T, Evans MC, Swan JH, Meldrum BS (1984) Calcium overload in selectively vulnerable neurons of the hippocampus during and after ischemia: an electron microscopy study in the rat. J Cereb Blood Flow Metab 4: 350–361

    Article  CAS  PubMed  Google Scholar 

  32. Waxman SG, Black JA, Ransom BR, Stys PK (1993) Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium. Brain Res 614: 137–145

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this paper

Cite this paper

Hanke, J., Sabel, B.A. (2004). L-type calcium channel antagonist nifedipine reduces neurofilament restitution following traumatic optic nerve injury. In: Baethmann, A., Eriskat, J., Lehmberg, J., Plesnila, N. (eds) Mechanisms of Secondary Brain Damage from Trauma and Ischemia. Acta Neurochirurgica Supplements, vol 89. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0603-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0603-7_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7206-3

  • Online ISBN: 978-3-7091-0603-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics