Skip to main content

Abstract

Myelin makes up most of the substance of white matter in the central nervous system (CNS). It is also present in large quantities in the peripheral nervous system (PNS). In both the CNS and the PNS, myelin is essential for normal functioning of the nerve fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asotra K, Macklin WB (1993) Protein kinase C activity modulates myelin gene expression in enriched oligodendrocytes. J Neurosci Res 34: 571–588

    Article  PubMed  CAS  Google Scholar 

  • Benjamins JA, McKhann GM (1981) Development, regeneration, and aging of the brain. In: Siegel GJ, Albers RW, Agranoff BW, Katzman R (eds) Basic neurochemistry, 3rd edn.: Little Brown, Boston, pp 445–469

    Google Scholar 

  • Benjamins JA, Iwata R, Hazlett J (1978) Kinetics of entry of proteins into the myelin membrane. J Neurochem 31: 1077–1077

    Article  Google Scholar 

  • Benveniste EN, Merrill JE (1986) Stimulation of oligodendroglial proliferation and maturation by interleukin-2. Nature 321: 610–613

    Article  PubMed  CAS  Google Scholar 

  • Beriet HH, Volk B (1980) Studies of human myelin proteins during old age. Mech Ageing Dev 14: 211–222

    Article  Google Scholar 

  • Berndt JA, Kim JG, Hudson LD (1992) Identification of cis-regulatory elements in the myelin proteolipid protein ( PLP) gene. J Biol Chem 267: 14730–14737

    Google Scholar 

  • Beuche W, Friede RL (1985) A new approach toward analyzing peripheral nerve fiber populations. II. Foreshortening of regenerated internodes corresponds to reduced sheath thickness. J Neuropathol Exp Neurol 44: 73–84

    Google Scholar 

  • Boiron F, Spivack WD, Deshmukh DS, Gould RM (1993) Basis for phospholipid incorporation into peripheral nerve myelin. J Neurochem 60: 320–329

    Article  PubMed  CAS  Google Scholar 

  • Bologa L (1985) Oligodendrocytes, key cells in myelination and target in demyelinating diseases. J Neurosci Res 14: 120

    Article  Google Scholar 

  • Brody BA, Kinney HC, Kloman AS, Gilles FH (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 46: 283–301

    Google Scholar 

  • Brown MC, Moreno MB, Bongarzone ER, Cohen PD, Soto EF, Pasquini JM (1993) Vesicular transport of myelin proteolipid and cerebroside sulfates to the myelin membrane. J Neurosci Res 35: 402–408

    Article  PubMed  CAS  Google Scholar 

  • Burger D, Steck AJ, Bernard CCA, Kerlero de Rosbo N (1993) Human myelin/oligodendrocyte glycoprotein: a new member of the L2/HNK-1 family. J Neurochem 61: 1822–1827

    Article  PubMed  CAS  Google Scholar 

  • Campagnoni AT (1988) Molecular biology of myelin proteins from the central nervous system. J Neurochem 51: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Campagnoni AT, Verdi JM, Verity AN, Amur-Umarjee S (1990) Posttranscriptional events in the expression of myelin protein genes. Ann NY Acad Sci 605: 270–279

    Article  PubMed  CAS  Google Scholar 

  • Carson MJ, Behringer RR, Brinster RL, McMorris FA (1993) Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron 10: 729–740

    Article  PubMed  CAS  Google Scholar 

  • Cervós-Navarro J (1993) Nonvascular intracerebral fluid spaces. In: Lasjaunias P, Leonardi M (eds) ESNR refresher course. Edizioni del Centauro, Udine, pp 25–34

    Google Scholar 

  • Dambska M, Laure-Kaminowska M (1990) Myelination as a parameter of normal and retarded brain maturation. Brain Dev 12: 214–220

    Article  PubMed  CAS  Google Scholar 

  • Davison AN, Dobbing J (1966) Myelination as a vulnerable period in brain development. Br Med Bull 20: 40–44

    Google Scholar 

  • De Vries GH, Norton WT (1974) The fatty acid composition of sphingolipids from bovine CNS axons and myelin. J Neurochem 22: 251–257

    Article  Google Scholar 

  • De Vries LS, Connell JA, Dubowitz LMS, Oozeer RC, Dubowitz V, Pennock JM (1987) Neurological electrophysiological and MRI abnormalities in infants with extensive cystic leukomalacia. Neuropediatrics 18: 61–66

    Article  PubMed  Google Scholar 

  • Debuch H (1970) Biochemistry of normal lipid metabolism in the brain. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 10. North Holland, Amsterdam, pp 233–264

    Google Scholar 

  • Deshmukh DS, Vorbrodt AW, Lee PK, Bear WD, Kuizon S (1988) Studies on the submicrosomal fractions of bovine oligodendroglia: lipid composition and glycolipid biosynthesis. Neurochem Res 13: 571–582

    Article  PubMed  CAS  Google Scholar 

  • Dietrich RB, Bradley WG, Zaragoza IV, Otto RJ, Taira RK, Wilson GH, Kangerloo H (1988) MR evaluation of early myelination patterns in normal and developmentally delayed infants. AJNR 9: 69–76

    Google Scholar 

  • Dobbing J (1968) Vulnerable periods in developing brain. In: Davison AN, Dobbing J (eds) Applied neurochemistry. Blackwell, Oxford, pp 287–316

    Google Scholar 

  • Dobbing J, Sands J (1973) Quantitative growth and development of human brain. Arch Dis Child 48: 757–767

    Article  PubMed  CAS  Google Scholar 

  • Duhamel-Clerin E, Villarroya H, Mehtali M, Lapie P, Besnard F, Gumpel M, Lachapelle F (1994) Cellular expression of an HMGCR promoter-cat fusion gene in transgenic mouse brain: evidence for a developmental regulation in oligodendrocytes. Glia 11: 35–46

    Article  PubMed  CAS  Google Scholar 

  • Farrer RG, Benjamins JA (1992) Entry of newly synthesized gangliosides into myelin. J Neurochem 58: 1477–1484

    Article  PubMed  CAS  Google Scholar 

  • Fishman MA, Agrawal HC, Alexander A, Golterman J, Martenson RE, Mitchell RF (1975) Biochemical maturation of human central nervous system myelin. J Neurochem 24: 689–694

    PubMed  CAS  Google Scholar 

  • Flechsig P (1901) Developmental (myelogenetic) localisation of the cerebral cortex in the human subject. Lancet II: 1027–1029

    Google Scholar 

  • Flechsig P (1920) Anatomie des menschlichen Gehirns and Rückenmarks. Thieme, Leipzig, pp 7–119

    Google Scholar 

  • Fors L, Hood L, Saavedra RA (1993) Sequence similarities of myelin basic protein promoters from mouse and shark: implications for the control of gene expression in myelinating cells. J Neurochem 60: 513–521

    Article  PubMed  CAS  Google Scholar 

  • Futerman AH, Stieger B, Hubbard AL, Pagano RE (1990) Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J Biol Chem 265: 8650–8657

    PubMed  CAS  Google Scholar 

  • Gilles FH (1976) Myelination in the neonatal brain. Hum Pathol 7: 244–248

    Article  PubMed  CAS  Google Scholar 

  • Gilles FH, Shankle W, Dooling EC (1983) Myelinated tracts:growth patterns. In: Gilles FH, Leviton A, Dooling EC (eds) The developing human brain. Wright, Boston, pp 117192

    Google Scholar 

  • Goodrum JF, Earnhardt T, Goines N, Bouldin TW (1994) Fate of myelin lipids during degeneration and regeneration of peripheral nerve:an autoradiographic study. J Neurosci 14: 357–367

    PubMed  CAS  Google Scholar 

  • Gould RM, Spivack W, Cataneo R, Holshek J, Konat G (1987) Lipids and myelination. In: Crescenzi S (ed) A multidisciplinary approach to myelin diseases. Plenum, New York, pp 87–102

    Google Scholar 

  • Guit GL, van de Bor M, den Ouden L, Wondergem IHM (1990) Prediction of neurodevelopmental outcome in the preterm infant: MR-staged myelination compared with cranial US. Radiology 175: 107–109

    Google Scholar 

  • Gupta SK, Pringle J, Poduslo JF, Mezei C (1993) Induction of myelin genes during peripheral nerve remyelination requires a continuous signal from the ingrowing axon. J Neurosci Res 34: 14–23

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M, Houdou S, Mito T, Takashima S, Asanuma K, Ohno T (1992) Development of myelination in the human fetal and infant cerebrum:a myelin basic protein immunohistochemical study. Brain Dev 14: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Haataja L, Parkkola R, Sonninen P, Vanhanen SL, Schleutker J, Aarinaa T, Turpeinen U, Renlund M, Aula P (1994) Phenotypic variation and magnetic resonance imaging ( MRI) in Salla disease, a free sialic acid storage disorder. Neuropediatrics 25: 238–244

    Google Scholar 

  • Jacoby CG, Yuh WTC, Afifi AK, Bell WE, Schelper RL, Sato Y (1987) Accelerated myelination in early Sturge-Weber syndrome demonstrated by MR imaging. J Comput Assist Tomogr 11: 226–231

    Article  PubMed  CAS  Google Scholar 

  • Jeckel D, Karrenbauer A, Birk R, Schmidt RR, Wieland F (1990) Sphingomyelin is synthesized in the cis Golgi. FEBS Lett 261: 155–157

    Article  PubMed  CAS  Google Scholar 

  • Kamholz J, Toffenetti, Lazzarini RA (1988) Organization and expression of the human myelin basic protein gene. J Neurosci Res 21: 62–70

    Article  PubMed  CAS  Google Scholar 

  • Keene LMF, Hewer EE (1931) Some observations on myelination in the human central nervous system. J Anat 66: 113

    Google Scholar 

  • Kinney HC, Brody BA, Kloman AS, Gilles FH (1988) Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 47: 217–234

    Google Scholar 

  • Kinney HC, Karthigasan J, Borenshteyn NI, Flax JD, Kirschner DA (1994) Myelination in the developing human brain:biochemical correlates. Neurochem Res 19: 983–996

    Article  PubMed  CAS  Google Scholar 

  • Kocsis JD, Waxman SG (1985) Demyelination:causes and mechanisms of clinical abnormality and functional recovery. In: Koetsier JC (ed) Handbook of clinical neurology, vol 3. Elsevier, Amsterdam, pp 29–47

    Google Scholar 

  • Konola JT, Yamamura T, Tyler B, Lees MB (1992) Orientation of the myelin proteolipid protein C-terminus in oligodendroglial membranes. Glia 5:112–121OR (1933) Development of behavior patterns and myelinization of the nervous system in human fetus and infant. Contrib Embryol XXIV: 1–57

    Google Scholar 

  • Lemke G (1988) Unwrapping the genes of myelin. Neuron 1: 535–543

    Article  PubMed  CAS  Google Scholar 

  • Lemke G (1993) The molecular genetics of myelination:an update. Glia 7: 263–271

    Article  PubMed  CAS  Google Scholar 

  • Ludin HP (1984) Function of myelin in the normal nerve fibre. Neuropediatrics 15 Suppl: 21–23

    Google Scholar 

  • Ludwin SK (1988) Remyelination in the central nervous system and the peripheral nervous system. In: Waxman SG (ed) Advances in neurology: functional recovery in neurological disease, vol 47. Raven, New York, pp 215–254

    Google Scholar 

  • Lütschg J (1984) Pathophysiological aspects of central and peripheral myelin lesions. Neuropediatrics 15 Suppl: 2427

    Google Scholar 

  • Martin DW (1985) Membranes. In: Martin DW, Mayes PA, Rochwel VW, Granner DK (eds) Harpers review of biochemistry, 20th edn. Lange Medical, Los Altos, pp 448–463

    Google Scholar 

  • Martin E, Boesch C, Zuerrer M, Kikinis R, Molinari L, Kaelin P, Boltshauser E, Duc G (1990) MR imaging of brain maturation in normal and developmentally handicapped children. J Comput Assist Tomogr 14: 685–692

    Article  PubMed  CAS  Google Scholar 

  • Matthieu JM (1993) An introduction to the molecular basis of inherited myelin diseases. J Inherit Metab Dis 16: 724–732

    Article  PubMed  CAS  Google Scholar 

  • Matthieu JM, Comte V, Tosic M, Honegger P (1992) Myelin gene expression during demyelination and remyelination in aggregating brain cell cultures. J Neuroimmunol 40: 231–234

    Article  PubMed  CAS  Google Scholar 

  • McLaurin J, Ackerley CA, Moscarello MA (1993) Localization of basic proteins in human myelin. J Neurosci Res 35: 618–628

    Article  PubMed  CAS  Google Scholar 

  • Menkes JH (1990) The leukodystrophies. N Engl J Med 322: 54–55

    Article  PubMed  CAS  Google Scholar 

  • Mickel HS, Gilles FH (1970) Changes in glial cells during human telencephalic myelinogenesis. Brain 93: 337–346

    Article  PubMed  CAS  Google Scholar 

  • Mikol DD, Rongnoparut P, Allwardt BA, Marton LS, Stefansson K (1993) The oligodendrocyte-myelin glycoprotein of mouse:primary structure and gene structure. Genomics 17: 604–610

    Article  PubMed  CAS  Google Scholar 

  • Mitchell LS, Gillespie SC, McAllister F, Fanarraga ML, Kirkham D, Kelly B, Brophy PJ, Grittiths IR, Montague P, Kennedy PGE (1992) Developmental expression of major myelin protein genes in the CNS of X-linked hypomyelinating mutant rumpshaker. J Neurosci Res 33: 205–217

    Article  PubMed  CAS  Google Scholar 

  • Morell P (ed) (1984) Myelin, 2nd edn. Plenum, New York

    Google Scholar 

  • Morell P, Wiesmann U (1984) A correlative synopsis of the leukodystrophies. Neuropediatrics 15 Suppll: 62–65

    Google Scholar 

  • Morell P, Quarles RH, Norton WT (1989) Formation, structure, and biochemistry of myelin. In: Siegel GJ, Agranoff BW, Albers RW (eds) Basic neurochemistry: molecular, cellular and medical aspects, 4th edn. Raven, New York, pp 109–136

    Google Scholar 

  • Norton WT (1984) Recent advances in myelin biochemistry. Ann NY Acad Sci 436: 5–10

    Article  PubMed  CAS  Google Scholar 

  • Norton WT, Autilio LA (1966) The lipid composition of purified bovine brain myelin. J Neurochem 13: 213–222

    Article  PubMed  CAS  Google Scholar 

  • Norton WT, Cammer W (1984) Isolation and characterization of myelin. In: Morell P (ed) Myelin. Plenum, New York, pp 147–195

    Chapter  Google Scholar 

  • Notterpek LM, Rome LH (1994) Functional evidence for the role of axolemma in CNS myelination. Neuron 13: 473–485

    Article  PubMed  CAS  Google Scholar 

  • Pagano RE (1990) The Golgi apparatus:insights from lipid biochemistry. Biochem Soc Trans 18: 361–366

    PubMed  CAS  Google Scholar 

  • Patsalos PN, Wiggins RC (1982) Brain maturation following administration of phenobarbital, phenytoin, and sodium valproate to developing rats or to their dams:effects on synthesis of brain myelin and other subcellular membrane proteins. J Neurochem 39: 915–923

    Article  PubMed  CAS  Google Scholar 

  • Percy AK, McKhann GM (1970) The biochemistry of myelin and the leukodystrophies. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 10. North Holland, Amsterdam, pp 134–149

    Google Scholar 

  • Poduslo SE, Jong Y (1984) Myelin development in infant brain. Neurochem Res 9: 1615–1626

    Article  PubMed  CAS  Google Scholar 

  • Pope A (1977) Neuroglia:quantitative aspects. In: Schoffeniels E, Franck G, Hertz L, Tower DB (eds) Dynamic properties of glia cells. Pergamon, New York, pp 13–20

    Google Scholar 

  • Poser CM (1957) Discussion des rapports sur les maladies démyélinisantes. Proceedings of the 3rd international congress of neuropathology. Editions Acta Medica Belgica, Brussels, pp 106–111

    Google Scholar 

  • Poser CM (1961) Leukodystrophy and the concept of dysmyelination. Arch Neurol 4: 323–332

    Article  PubMed  CAS  Google Scholar 

  • Poser CM (1978) Dysmyelination revisited. Arch Neurol 35: 401–407

    Article  PubMed  CAS  Google Scholar 

  • Probstmeier R, Fahrig T, Spiess E, Schachner M (1992) Interactions of the neural cell adhesion molecule and the myelin-associated glycoprotein with collagen type I: involvement in fibrillogenesis. J Cell Biol 116: 1063–1070

    Article  PubMed  CAS  Google Scholar 

  • Richardson EP (1982) Myelination in the human central nervous system. In: Haymaker W, Adams RD (eds) Histology and histopathology of the nervous system. Thomas, Springfield, pp 146–173

    Google Scholar 

  • Rodriguez M (1992) Central nervous system demyelination and remyelination in multiple sclerosis and viral models of disease. J Neuroimmunol 40: 255–264

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez M, Prayoonwiwat N, Howe C, Sanborn K (1994) Proteolipid protein gene expression in demyelination and remyelination of the central nervous system: a model for multiple sclerosis. J Neuropathol Exp Neurol 53: 136–143

    Article  PubMed  CAS  Google Scholar 

  • Rorke LB, Riggs HE, Showers MJC, Cabrera CV, Cohn M (1969) Myelination of the brain in the newborn. Lippincott, Philadelphia, pp 1–105

    Google Scholar 

  • Royland J, Konat GW, Kanoh M, Wiggins RC (1992) Down regulation of myelin-specific mRNAs in the mechanism of hypomyelination in the undernourished developing brain. Dev Brain Res 65: 223–226

    Article  CAS  Google Scholar 

  • Royland JE, Konat G, Wiggins RC (1993a) Abnormal upregulation of myelin genes underlies the critical period of myelination in undernourished developing rat brain. Brain Res 607: 113–116

    Article  PubMed  CAS  Google Scholar 

  • Royland JE, Konat GW, Wiggins RC (1993b) Myelin gene activation: a glucose sensitive critical period in development. J Neurosci Res 36: 399–404

    Article  PubMed  CAS  Google Scholar 

  • Saito M, Yu RK (1992) Role of myelin-associated neuraminidase in the ganglioside metabolism of rat brain myelin. J Neurochem 58: 83–87

    Article  PubMed  CAS  Google Scholar 

  • Seitelberger F (1984) Structural manifestations of leukodystrophies. Neuropediatrics 15 Suppl: 53–61

    Google Scholar 

  • Shine HD, Readhead C, Popko B, Hood L, Sidman RL (1992) Morphometric analysis of normal, mutant, and transgenic CNS: correlation of myelin basic protein expression to myelinogenesis. J Neurochem 58: 342–349

    Article  PubMed  CAS  Google Scholar 

  • Sinoway MP, Kitagawa K, Timsit S, Hashim GA, Colman DR (1994) Proteolipid protein interactions in transfectants: implications for myelin assembly. J Neurosci Res 37: 551562

    Google Scholar 

  • Skoff RP (1980) Neuroglia: a reevaluation of their origin and development. Pathol Res Pract 168: 279–300

    Article  PubMed  CAS  Google Scholar 

  • Smith R (1992) The basic protein of CNS myelin:its structure and ligand binding. J Neurochem 59: 1589–1608

    Article  PubMed  CAS  Google Scholar 

  • Stryer L (1981) Introduction to biological membranes. In: Stryer L (ed) Biochemistry, 2nd edn. Freeman, New York, pp 205–230

    Google Scholar 

  • Svennerholm L (1963) Some aspects of the biochemical changes in leukodystrophy. In: Folch PJ, Bauer H (eds) Brain lipids and lipoproteins and the leukodystrophies. Elsevier, Amsterdam, pp 104–119

    Google Scholar 

  • Thompson EB (1970) The biochemistry of the lipids and proteins of white matter. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 9. North Holland, Amsterdam, pp 1–22

    Google Scholar 

  • Van de Bor M, Guit GL, Schreuder AM, Wondergem J, Vielvoye GJ (1989) Early detection of delayed myelination in preterm infants. Pediatrics 84: 407–411

    PubMed  Google Scholar 

  • Van der Knaap MS, Valk J, Bakker CJ, Schooneveld M, Faber JAJ, Willemse J, Gooskens PHJM (1991) Myelination as expression of the functional maturity of the brain. Dev Med Child Neurol 33: 849–857

    Article  PubMed  Google Scholar 

  • Vogel US, Thompson RJ (1988) Molecular structure, localization, and possible functions of the myelin-associated enzyme 2,3-cyclic nucleotide 3 -phosphodiesterase. J Neurochem 50: 1667–1677

    Article  PubMed  CAS  Google Scholar 

  • Vogt 0 (1910) Quelques considérations genérales sur la myélo-architecture du lobe frontal. Rev Neurol 20: 405–420

    Google Scholar 

  • Waxman SG, Sims TJ (1984) Specificity in central myelination: evidence for local regulation of myelin thickness. Brain Res 292: 179–185

    Article  PubMed  CAS  Google Scholar 

  • Waxman SG, Ritchie JM (1993) Molecular dissection of the myelinated axon. Ann Neurol 33: 121–136

    Article  PubMed  CAS  Google Scholar 

  • Weimbs T, Stoffel W (1992) Proteolipid protein (PLP) of CNS myelin:positions of free, disulfide-bonded and fatty acid thioester-linked cysteine residues and implications for the membrane topology of PLP. Biochem 31: 12289–12296

    Article  CAS  Google Scholar 

  • Wiggings RC (1986) Myelination:a critical stage in development. Neurotoxicology 7: 103–120

    Google Scholar 

  • Williams KA, Deber CM (1993) The structure and function of central nervous system myelin. Crit Rev Clin Lab Sci 30: 2964

    Article  Google Scholar 

  • Wisniewski KE, Schmidt-Sidor B (1989) Postnatal delay of myelin formation in brains from Down syndrome infants and children. Clin Neuropathol 8: 55–62

    PubMed  CAS  Google Scholar 

  • Wood PM, Bunge RP (1991) The origin of remyelinating cells in the adult central nervous system: the role of the mature oligodendrocyte. Glia 4: 225–232

    Article  PubMed  CAS  Google Scholar 

  • Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3–70

    Google Scholar 

  • Zurbriggen A, Vandevelde M, Steck A, Angst B (1984) Myelin-associated glycoprotein is produced before myelin basic protein in cultured oligodendrocytes. J Neuroimmunol 6: 41–49

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van der Knaap, M.S., Valk, J. (1995). Myelin and White Matter. In: Magnetic Resonance of Myelin, Myelination, and Myelin Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03078-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03078-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03080-6

  • Online ISBN: 978-3-662-03078-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics