Skip to main content

Part of the book series: NATO ASI Series ((ASII,volume 13))

Abstract

The sources of methane are the most complex and critical element in understanding the concentrations of atmospheric methane and their trends. For those who want to reduce methane in the atmosphere or prevent it from increasing, controlling the sources is perhaps the only practical approach. Accordingly,.a significant portion of this book is devoted to estimating the global and regional emission rates. The purpose of this chapter is to introduce the subsequent chapters on individual sources and to lay the foundation for the common elements of determining global emission rates from the many and varied sources of methane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aselmann, I., P.J. Crutzen. 1989. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J. Atmos. Chem., 8: 307–358.

    Article  CAS  Google Scholar 

  • Bartlett, K., R.C. Harriss. 1993. Review and assessment of methane emissions from wetlands. Chemosphere, 26: 261–320.

    Article  CAS  Google Scholar 

  • Butler, J.H., J.W. Elkins, T.M. Thompson, B.D. Hall, T.H. Swanson, V. Koropolov. 1991. Oceanic consumption of CH3CC13: implications for tropospheric OH. J. Geophys. Res., 96:22, 347–22, 355.

    Article  Google Scholar 

  • Chappellaz, J., J.M. Barnola, D. Raynaud, Y.S. Korotkevich, C. Lorius. 1990. Nature, 345:127–131.

    Article  CAS  Google Scholar 

  • Chappellaz, J.A, I.Y. Fung, A.M. Thompson. 1993. The atmospheric CH4 increase since the Last Glacial Maximum, 1. Source estimates. Tellus,in press.

    Google Scholar 

  • Cofer, W.R. III, J.S. Levine, E.L. Winstead, B.J. Stocks. 1991. Trace gas and particulate emissions from biomass burning in temperate ecosystems. In: Global Biomass Burning, Atmospheric, Climatic, and Biospheric Implications (J.S. Levine, ed.):203–208.

    Google Scholar 

  • Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L.P. Steele, P.J. Fraser. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res., 96 (D7):13, 033–13, 065.

    Article  CAS  Google Scholar 

  • Harriss, R.C., D.I. Sebacher, F.P. Day, Jr. 1982. Methane flux in the Great Dismal Swamp. Nature, 297: 673–674.

    Article  CAS  Google Scholar 

  • Ito, S., E.W.F. Peterson, W.R. Grant. 1989. Rice in Asia: is it becoming an inferior good? Amer. J. Agr. Econ., 71: 32–42.

    Article  Google Scholar 

  • Kammen, D.M., B.D. Marino. 1993. On the origin and magnitude of pre-industrial anthropogenic CO2 and CH4 emissions. Chemosphere, 26: 69–86.

    Article  CAS  Google Scholar 

  • Khalil, M.A.K. 1992. A statistical method for estimating uncertainties in the total global budget of trace gases. J. Environ. Sci. Health, A27 (3): 755–770.

    Article  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1983. Sources, sinks, and seasonal cycles of atmospheric methane. J. Geophys. Res., 88:5, 131–5, 144.

    Article  CAS  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1984. The atmospheric lifetime of methylchloroform (CH3CC13). Tellus, 36B:317–312.

    Article  CAS  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1985. Causes of increasing atmospheric methane: depletion of hydroxyl radicals and the rise of emissions. Atmos. Environ., 19: 397–407.

    Article  CAS  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1987. Atmospheric methane: trends over the last 10,000 years. Atmos. Environ., 21:2, 445–2, 452.

    Article  CAS  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1990a. Atmospheric methane: recent global trends. Environ. Sci. Tech., 24: 549–553.

    Article  CAS  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1990b. Constraints on the global sources of methane and an analysis of recent budgets. Tellus, 42B: 229–236.

    Article  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1993. Decreasing trend of methane: unpredictability of future concentrations. Chemosphere, 26 (1–4): 803–814.

    Article  CAS  Google Scholar 

  • Lacroix, A.V. 1993. Unaccounted-for ssources of fossil and isotopically-enriched methane and their contribution to the emissions inventory: a review and synthesis. Chemosphere, 26 (1–4): 507–557.

    Article  CAS  Google Scholar 

  • Lassey, K.R., D.C. Lowe, C.A.M. Brenninkmeijer, A.J. Gomez. 1993. Atmospheric methane and its carbon isotopes in the southern hemisphere: their time series and an instructive model. Chemosphere, 26 (1–4): 95–109.

    Article  CAS  Google Scholar 

  • Lerner, J., E. Matthews, I. Fung. 1988. Methane emission from animals: a global high-resolution data base. Global Biogeochem. Cycles, 2: 139–156.

    Article  Google Scholar 

  • Levin, I., P. Bergamaschi, H. Dörr, D. Trapp. 1993. Stable isotopic signature of methane from major sources in Germany. Chemosphere, 26 (1–4): 161–178.

    Article  CAS  Google Scholar 

  • Levine, J.S., C.P. Rinsland, G.M. Tennille. 1985. The photochemistry of methane and carbon monoxide in the troposphere in 1950 and 1985. Nature, 318:254–257.

    Article  CAS  Google Scholar 

  • Lovelock, J.E. 1977. Methyl chloroform in the troposphere as an indicator of OH radical abundance. Nature, 267: 32–33.

    Article  CAS  Google Scholar 

  • Lu, Y., M.A.K. Khalil. 1991. Tropospheric OH: model calculations of spatial, temporal, and secular variations. Chemosphere, 23 (3): 397–444.

    Article  CAS  Google Scholar 

  • Marland, G., R.M. Rotty, N.L. Treat. 1985. CO2 from fossil fuel burning: global distribution of emissions. Tellus, 37B: 243–258.

    Google Scholar 

  • Matthews, E., I. Fung, J. Lerner. 1991. Methane emission from rice cultivation: geographic and seasonal distribution of cultivated areas and emissions. Global Biogeochemical Cycles, 5 (1): 3–24.

    Article  CAS  Google Scholar 

  • Mitchell, B.R. 1980. European Historical Statistics, 2nd Rev. Ed. Facts on File, New York, U.S.A.

    Google Scholar 

  • Mitchell, B.R. 1982. International Historical Statistics, Africa and Asia. New York University Press.

    Google Scholar 

  • Mitchell, B.R. 1983. International Historical Statistics, The Americas and Australasia. Gale Research Co., Detroit, Michigan.

    Google Scholar 

  • Midgely, P.M. 1989. The production and release to the atmosphere of 1,1,1-trichloroethane (methyl chloroform). Atmos. Environ., 23:2, 663–2, 665.

    Article  Google Scholar 

  • Mroz, E.J. 1993. Deuteromethanes: potential fingerprints of the sources of atmospheric methane. Chemosphere, 26 (1–4): 45–53.

    Article  CAS  Google Scholar 

  • Pinto, J., M.A.K. Khalil. 1991. The stability of tropospheric OH during ice ages, inter-glacial epochs and modern times. Tellus, 43B: 347–352.

    Article  Google Scholar 

  • Prinn, R.G., D. Cunnold, R.A. Rasmussen, P. Simmonds, F. Alyea, A. Crawford, P. Fraser, and R. Rosen. 1987. Atmospheric trends in methylchloroform and the global average for the hydroxyl radical. Science, 238: 945–950.

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen, R.A., M.A.K. Khalil. 1981. Interlaboratory comparison of fluorocarbons 11, 12, methylchloroform, and nitrous oxidemeasurements. Atmos. Environ., 15:1, 559–1, 568.

    Article  CAS  Google Scholar 

  • Seiler, W., A. Holzapfel-Pschorn, R. Conrad, D. Scharffe. 1984. Methane emission from rice paddies. J. Atmos. Chem., 1: 241–268.

    Article  CAS  Google Scholar 

  • Shearer, M.J. and M.A.K. Khalil. 1989. The global emissions of methane over the last century. Eos Trans., 70 (43): 1017.

    Google Scholar 

  • Singh, H.B. 1977. Preliminary estimation of average tropospheric HO concentrations in the northern and southern hemispheres. Geophys. Res. Let., 4: 453–456.

    Article  CAS  Google Scholar 

  • Steele, L.P., E.J. Dlugokencky, P.M. Lang, P.P. Tans, R.C. Martin, K.A. Masarie. 1992. Slowing down of the global accumulation of atmospheric methane during the 1980s. Nature, 358: 313–316.

    Article  CAS  Google Scholar 

  • Stocks, B.J. 1991. The extent and impact of forest fires in northern circumpolar countries. In: Global Biomass Burning Atmospheric, Climatic, and Biospheric Implications, J.S. Levine, ed.:197–202.

    Google Scholar 

  • Taylor, J.A., P.R. Zimmerman. 1991. Modeling trace gas emissions from biomass burning. In: Global Biomass Burning, Atmospheric, Climatic, and Biospheric Implications (J.S. Levine, ed.), 345–350

    Google Scholar 

  • Thompson, A.M., R.J. Cicerone. 1986. Possible perturbations to atmospheric CO, CH4, and OH. J. Geophys. Res., 91:10, 853–10, 864.

    Article  CAS  Google Scholar 

  • United Nations. 1977, 1978, 1980, 1982, 1984, 1986, 1989, 1990, 1991. FAO Production Yearbook vols. 30, 35, 37, 39, 42, 43, 44. Food and Agriculture Organization of the United Nations, Rome.

    Google Scholar 

  • Vaghjiani, G.L., A.R. Ravishankara. 1991. New measurement of the rate coefficient for the reaction of OH with methane. Nature, 350: 406–408.

    Article  CAS  Google Scholar 

  • Wahlen, M., N. Tanaka, R. Henry, B. Deck, J. Zeglen, J.S. Vogel, J. Southon, A. Shemesh, R. Fairbanks, W. Broecker. 1989. Carbon-14 in methane sources and in atmospheric methane: the contribution from fossil carbon. Science, 245:286–245.

    Article  PubMed  CAS  Google Scholar 

  • Whalen, S.C., W.S. Reeburgh. 1992. Interannual variations in tundra methane emission: a 4-year time series at fixed sites. Global Biogeochem. Cycles, 6:139–159.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khalil, M.A.K., Shearer, M.J. (1993). Sources of Methane: An Overview. In: Khalil, M.A.K. (eds) Atmospheric Methane: Sources, Sinks, and Role in Global Change. NATO ASI Series, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84605-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84605-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84607-6

  • Online ISBN: 978-3-642-84605-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics