Skip to main content

Animal Models of Epilepsy and Epileptic Seizures

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 138))

Abstract

In epilepsy research, animal models serve a variety of purposes. First, they are used in the search for new antiepileptic drugs. Second, once the anticonvulsant activity of a novel compound has been detected, animal models are used to evaluate the possible specific efficacies of the compound against different types of seizures or epilepsy. Third, animal models can be used to characterize the preclinical efficacy of novel compounds during chronic administration. Such chronic studies can serve different objectives, for instance, evaluation of whether drug efficacy changes during prolonged treatment, e.g. because of the development of tolerance, or examination of whether a drug exerts antiepilep-togenic effects during prolonged administration, i.e. is a true antiepileptic drug. Fourth, animal models are employed to characterize the mechanism of action of old and new antiepileptic drugs. Fifth, certain models can be used to study mechanisms of drug resistance in epilepsy. Sixth, in view of the possibility that chronic brain dysfunction, such as epilepsy, might lead to altered sensitivity to drug adverse effects, models involving epileptic animals are useful to study whether epileptogenesis alters the adverse effect potential of a given drug. Seventh, animal models are needed for studies on the pathophysiology of epilepsies and epileptic seizures, e.g. the processes involved in epileptogenesis and ictogenesis (Lothman 1996a).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamec RE (1990) Does kindling model anything clinically relevant? Biol Psychiatry 27:249–279

    Article  PubMed  CAS  Google Scholar 

  • Albright PS (1983) Effects of carbamazepine, clonazepam, and phenytoin on seizure threshold in amygdala and cortex. Exp Neurol 79:11–17

    Article  PubMed  CAS  Google Scholar 

  • Allen KM, Walsh C (1996) Shaking down new epilepsy genes. Nature Med 2:516–518

    Article  PubMed  CAS  Google Scholar 

  • Bickford RG, Klass DW (1969) Sensory precipitation and reflex mechanisms. In: Jasper HH, Ward AAJ, Pope A (eds) Basic mechanisms of the epilepsies. Little Brown, Boston, pp. 543–564

    Google Scholar 

  • Browning RA, Nelson DK (1985) Variation in threshold and pattern of electroshock-induced seizures in rats depending on site of stimulation. Life Sci 37:2205–2211

    Article  PubMed  CAS  Google Scholar 

  • Chapman AG, Croucher MJ, Meldrum BS (1984) Evaluation of anticonvulsant drugs in DBA/2 mice with sound-induced seizures. Arzneim-Forsch 34:1261–1270

    CAS  Google Scholar 

  • Chapman AG, Graham JL, Patel S, Meldrum BS (1991) Anticonvulsant activity of two orally active competitive N-methyl-D-aspartate antagonists, CGP 37849 and CGP 39551, against sound-induced seizures in DBA/2 mice and photically induced myoclonus in Papio papio. Epilepsia 32:578–587

    Article  PubMed  CAS  Google Scholar 

  • Coenen AML, Drinkenburg WHIM, Inoue M, van Luijtelaar ELJM (1992) Genetic models of absence epilepsy, with emphasis on the WAG/Rij strain of rats. Epilepsy Res 12:75–86

    Article  PubMed  CAS  Google Scholar 

  • Commission on Classification and Terminology of the International League Against Epilepsy (1981) Proposal for revised clinical and electroencephalographic classification of epileptic seizures. Epilepsia 22:489–501

    Article  Google Scholar 

  • Commission on Classification and Terminology of the International League Against Epilepsy (1989) Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 30:389–399

    Article  Google Scholar 

  • Consroe P, Wolkin A (1977) Cannabidinol — antiepileptic drug comparisons and interactions in experimentally induced seizures in rats. J Pharmacol Exp Ther 201:26–32

    PubMed  CAS  Google Scholar 

  • Consroe P, Piccione A, Chin L (1979) Audiogenic seizure susceptible rats. Fed Proc 38:2411–2416

    PubMed  CAS  Google Scholar 

  • Craig CR, Colasanti BK (1988) A study of pentylenetetrazol kindling in rats and mice. Pharmacol Biochem Behav 31:867–870

    Article  PubMed  CAS  Google Scholar 

  • Craig CR, Colasanti BK (1992) Cobalt-induced focal seizures: neuronal networks and actions of antiepileptic drugs. In: Faingold CL, Fromm GH (eds) Drugs for control of epilepsy: actions on neuronal networks involved in seizure disorders. CRC Press, Boca Raton, pp. 125–142

    Google Scholar 

  • Crawford RD (1969) A new mutant causing epileptic seizures in domestic fowl. Poultry Sci 48:1799

    Google Scholar 

  • Czuczwar SJ, Frey H-H, Löscher W (1985) Antagonism of N-methyl-D,L-aspartic acid induced by antiepileptic drugs and other agents. Eur J Pharmacol 108:273–280

    Article  PubMed  CAS  Google Scholar 

  • Dailey JW, Jobe PC (1985) Anticonvulsant drugs and the genetically epilepsy-prone rat. Fed Proc 44:2640–2644

    PubMed  CAS  Google Scholar 

  • Dalby NO, Nielsen EB (1997) Comparison of the preclinical anticonvulsant profiles of tiagabine, lamotrigine, gabapentin and vigabatrin. Epilepsy Res 28:63–72

    Article  PubMed  CAS  Google Scholar 

  • Dam M (1992) Localization related epileptic syndromes. In: Trimble MR, Bolwig TG (eds) The temporal lobes and the limbic system. Wrightson Biomedical Publishing, Petersfield, pp. 115–128

    Google Scholar 

  • Dreifuss FE (1994) The international classification of seizures and epilepsies: advantages. In: Wolf P (ed) Epileptic seizures and syndromes. Libbev, London, pp. 9–14

    Google Scholar 

  • Edmonds HL Jr, Bellin SI, Mia Chen F-C, Hegreberg GA (1978) Anticonvulsant properties of rozipine in epileptic and nonepileptic beagle dogs. Epilepsia 19:139–146

    Article  PubMed  CAS  Google Scholar 

  • Empson RM, Amitai Y, Jefferys JG, Gutnick MJ (1993) Injection of tetanus toxin into the neocortex elicits persistent epileptiform activity but only transient impairment of GABA release. Neuroscience 57:235–239

    Article  PubMed  CAS  Google Scholar 

  • Engel JJ (1992) Experimental models of epilepsy: classification and relevance to human epileptic phenomena. In: Avanzini G, Engel JJ, Fanello R, Heinemann U (eds) Neurotransmitters in epilepsy. Elsevier, Amsterdam, pp. 9–20

    Google Scholar 

  • Engel JJ, Cahan L (1986) Potential relevance of kindling to human partial epilepsy. In: Wada JA (ed) Kindling 3. Raven Press, New York, pp. 37–51

    Google Scholar 

  • Faingold CL, Fromm GH (1992) Drugs for control of epilepsy: actions on neuronal networks involved in seizure disorders. CRC Press, Boca Raton

    Google Scholar 

  • Faingold CL, Narikotu DK (1992) The genetically epilepsy-prone rat: neuronal networks and actions of amino acid neurotransmitters. In: Faingold CL, Fromm GH (eds) Drugs for control of epilepsy: actions on neuronal networks involved in seizure disorders. CRC Press, Boca Raton, pp. 277–308

    Google Scholar 

  • Fisher RS (1989) Animal models of the epilepsies. Brain Res Rev 14:245–278

    Article  PubMed  CAS  Google Scholar 

  • Frankel WN, Taylor BA, Noebels JL, Lutz CM (1994) Genetic epilepsy model derived from common inbred mouse strains. Genetics 138:481–489

    PubMed  CAS  Google Scholar 

  • Gastaut H, Gastaut JL, Geucalves CE, Silva CE, Fernandez Sanchez JL (1975) Relative frequency of different types of epilepsy: a study employing the classification of the international league against epilepsy. Epilepsia 16:457–467

    Article  PubMed  CAS  Google Scholar 

  • Gladding GD, Kupferberg HJ, Swinyard EA (1985) Antiepileptic drug development program. In: Frey H-H, Janz D (eds) Antiepileptic drugs. Springer-Verlag, Berlin, pp. 341–350

    Google Scholar 

  • Goddard GV, McIntyre DC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25:295–330

    Article  PubMed  CAS  Google Scholar 

  • Hauser WA, Annegers JF, Kurland LT (1993) Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984. Epilepsia 34:453–468

    Article  PubMed  CAS  Google Scholar 

  • Heinemann U, Draguhn A, Ficker E, Stabel J, Zhang CL (1994) Strategies for the development of drugs for pharmacoresistant epilepsies. Epilepsia 35 [Suppl 5]:S10–S21

    Article  PubMed  Google Scholar 

  • Heller AH, Dichter MA, Sidman RL (1983) Anticonvulsant sensitivity of absence seizures in the tottering mutant mouse. Epilepsia 25:25–34

    Article  Google Scholar 

  • Hernandez TD (1997) Preventing post-traumatic epilepsy after brain injury: weighing the costs and benefits of anticonvulsant prophylaxis. Trends Neurosci 18:59–620

    CAS  Google Scholar 

  • Hoogerkamp A, Vis PW, Danhof M, Voskuyl RA (1994) Characterization of the pharmacodynamics of several antiepileptic drugs in a direct cortical stimulation model of anticonvulsant effect in the rat. J Pharmacol Exp Ther 269:521–528

    PubMed  CAS  Google Scholar 

  • Hosford DA, Wang Y (1997) Utility of the lethargic (lh/lh) mouse model of absence seizures in predicting the effects of lamotrigine, vigabatrin, tiagabine, gabapentin, and topiramate against human absence seizures. Epilepsia 38:408–414

    Article  PubMed  CAS  Google Scholar 

  • Hosford DA, Clark S, Cao Z, Wilson WAJ, Fu-hsiung L, Morrisett RA, Huin A (1992) The role of GABAB receptor activation in absence seizures of lethargic (lh/lh) mice. Science 257:398–401

    Article  PubMed  CAS  Google Scholar 

  • Hosford DA, Wang Y, Liu CC, Snead OC (1995) Characterization of the antiabsence effects of SCH 50911, a GABAB antagonist, in the lethargic mouse, gamma-hydroxybutyrate, and pentylenetetrazole models. J Pharmacol Exp Ther 274:1399–1403

    PubMed  CAS  Google Scholar 

  • Hönack D, Löscher W (1995) Kindling increases the sensitivity of rats to adverse effects of certain antiepileptic drugs. Epilepsia 36:763–771

    Article  PubMed  Google Scholar 

  • Jobe PC, Mishra PK, Dailey JW (1992) Genetically epilepsy-prone rats: actions of antiepileptic drugs and monoaminergic neurotransmitters. In: Faingold CL, Fromm GH (eds) Drugs for control of epilepsy: actions on neuronal networks involved in seizure disorders. CRC Press, Boca Raton, pp. 253–275

    Google Scholar 

  • Killam EK (1979) Photomyoclonic seizures in the baboon. Fed Proc 38:2429–2433

    PubMed  CAS  Google Scholar 

  • Killam KF, Killam EK, Naquet RJ (1966) Mise en evidence chez certains singels d’un syndrome photomyoclonique. Can R Acad Sci 262:1010–1212

    Google Scholar 

  • Killam KF, Killam EK, Naquet RJ (1967) An animal model of light sensitive epilepsy. Electroencephalogr Clin Neurophysiol 22:497–513

    Article  PubMed  CAS  Google Scholar 

  • Killam EK, Matsuzaki M, Killam KF (1973) Effects of chronic administration of benzodiazepines on epileptic seizures and brain electrical activity in Papio papio. In: Garratini S, Mussini E, Randall LO (eds) Benzodiazepines. Raven Press, New York, pp. 443–460

    Google Scholar 

  • King JT, LaMotte CC (1989) El mouse as a model of focal epilepsy: a review. Epilepsia 30:257–265

    Article  PubMed  CAS  Google Scholar 

  • Koella WP (1985) Animal experimental methods in the study of antiepileptic drugs. In: Frey H-H, Janz D (eds) Antiepileptic drugs. Springer, Berlin, pp. 283–350

    Google Scholar 

  • Kostopoulos GK (1992) The tottering mouse: a critical review of its usefulness in the study of the neuronal mechanisms underlying epilepsy. J Neural Transm 35 [Suppl]:21–36

    CAS  Google Scholar 

  • Krall RL, Penry JK, Kupferberg HJ, Swinyard EA (1978a) Antiepileptic drug development: I. History and a program for progress. Epilepsia 19:393–408

    Article  PubMed  CAS  Google Scholar 

  • Krall RL, Penry JK, White BG, Kupferberg HJ, Swinyard EA (1978b) Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia 19:409–428

    Article  PubMed  CAS  Google Scholar 

  • Krupp E, Löscher W (1998) Anticonvulsant drug effects in the direct cortical ramp-stimulation model in rats: comparison with conventional seizure models. J Pharmacol Exp Ther 285:1137–1149

    PubMed  CAS  Google Scholar 

  • Laird H, Consroe P, Straussner A (1976) Anticonvulsant drug comparisons in audiogenic and nonaudiogenic rats. Pharmacologist 18:136

    Google Scholar 

  • Leite JP, Cavalheiro EA (1995) Effects of conventional antiepileptic drugs in a model of spontaneous recurrent seizures in rats. Epilepsy Res 20:93–104

    Article  PubMed  CAS  Google Scholar 

  • Leppik IE (1992) Intractable epilepsy in adults. In: Theodore WH (ed) Surgical treatment of epilepsy. Elsevier, Amsterdam, pp. 7–11

    Google Scholar 

  • Levy RH, Mattson RH, Meldrum BS (1995) Antiepileptic drugs. 4th edn, Raven Press, New York

    Google Scholar 

  • Lewin E (1972) The production of epileptogenic cortical foci in experimental animals by freezing. In: Purpura DP, Penry JK, Tower D, Woodbury DM, Walter R (eds) Experimental models of epilepsy — A manual for the laboratory worker. Raven Press, New York, pp. 37–50

    Google Scholar 

  • Loiseau P (1986) Intractable epilepsy: prognostic evaluation. In: Schmidt D, Morselli PL (eds) Intractable epilepsy: experimental and clinical aspects. Raven Press, New York, pp. 227–258

    Google Scholar 

  • Löscher W (1981) Plasma levels of valproic acid and its metabolites during continued treatment in dogs. J Vet Pharmacol Ther 4:111–119

    Article  PubMed  Google Scholar 

  • Löscher W (1984) Genetic animal models of epilepsy as a unique resource for the evaluation of anticonvulsant drugs. A review. Methods Findings Experiment Clin Pharmacol 6:531–547

    Google Scholar 

  • Löscher W (1986) Experimental models for intractable epilepsy in nonprimate animal species. In: Schmidt D, Morselli PL (eds) Intractable epilepsy: experimental and clinical aspects. Raven Press, New York, pp. 25–37

    Google Scholar 

  • Löscher W (1991) The epileptic gerbil. Neuronal networks and actions of antiepileptic drugs. In: Faingold CL, Fromm GH (eds) Drugs for control of epilepsy. CRC Press, Boca Raton, pp. 309–323

    Google Scholar 

  • Löscher W (1992) Genetic animal models of epilepsy. In: Driscoll P (ed) Genetically defined animal models of neurobehavioral dysfunctions. Birkhäuser, Boston, pp. 111–135

    Google Scholar 

  • Löscher W (1993) Effects of the antiepileptic drug valproate on metabolism and function of inhibitory and excitatory amino acids in the brain. Neurochem Res 18:485–502

    Article  PubMed  Google Scholar 

  • Löscher W (1994) Neue Antiepileptika — ein Fortschritt für die Behandlung epileptischer Tiere? Kleintierpraxis 39:325–342

    Google Scholar 

  • Löscher W (1997) Animal models of intractable epilepsy. Prog Neurobiol (in press)

    Google Scholar 

  • Löscher W, Ebert U (1996) Basic mechanisms of seizure propagation: targets for rational drug design and rational polypharmacy. Epilepsy Res 11 [Suppl]:17–44

    Google Scholar 

  • Löscher W, Fiedler M (1996) The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. VI. Seasonal influences on maximal electroshock and pentylenetetrazol seizure thresholds. Epilepsy Res 25:3–10

    Article  PubMed  Google Scholar 

  • Löscher W, Rundfeldt C (1991) Kindling as a model of drug-resistant partial epilepsy: selection of phenytoin-resistant and nonresistant rats. J Pharmacol Exp Ther 258:483–489

    PubMed  Google Scholar 

  • Löscher W, Hönack D (1991) Responses to NMDA receptor antagonists altered by epileptogenesis. Trends Pharmacol Sci 12:52

    Article  PubMed  Google Scholar 

  • Löscher W, Schmidt D (1988) Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res 2:145–181

    Article  PubMed  Google Scholar 

  • Löscher W, Schmidt D (1993) New drugs for the treatment of epilepsy. Curr Opin Invest Drugs 2:1067–1095

    Google Scholar 

  • Löscher W, Schmidt D (1994) Strategies in antiepileptic drug development: is rational drug design superior to random screening and structural variation? Epilepsy Res 17:95–134

    Article  PubMed  Google Scholar 

  • Löscher W, Schwartz-Porsche D, Frey H-H, Schmidt D (1985) Evaluation of epileptic dogs as an animal model of human epilepsy. Arzneim-Forsch 35:82–87

    Google Scholar 

  • Löscher W, Fassbender CP, Nolting B (1991a) The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal electroshock seizure models. Epilepsy Res 8:79–94

    Article  PubMed  Google Scholar 

  • Löscher W, Hönack D, Fassbender CP, Nolting B (1991b) The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. III. Pentylenetetrazol seizure models. Epilepsy Res 8:171–189

    Article  PubMed  Google Scholar 

  • Loskota WJ, Lomax P (1975) The Mongolian gerbil (Meriones unguiculatus) as a model for the study of the epilepsies: EEG records of seizures. Electroencephalogr Clin Neurophysiol 38:597–604

    Article  PubMed  CAS  Google Scholar 

  • Lothman EW (1996a) Neurobiology as a basis for rational polypharmacy. Epilepsy Res [Suppl] 11:3–7

    CAS  Google Scholar 

  • Lothman EW (1996b) Basis mechanisms of seizure spread. Epilepsy Res [Suppl] 11:9–16

    CAS  Google Scholar 

  • Lothman EW, Bertram EH (1993) Epileptogenic effects of status epileptics. Epilepsia 34 [Suppl]:S59–S70

    Article  PubMed  Google Scholar 

  • Lothman EW, Bertram EH, Kapur J, Stringer JL (1990) Recurrent spontaneous hip-pocampal seizures in the rat as a chronic sequela to limbic status epilepticus. Epilepsy Res 6:110–118

    Article  PubMed  CAS  Google Scholar 

  • Lothman EW, Williamson JM, Van Landingham KE (1991) Intraperitoneal phenytoin suppresses kindled responses: effects on motor and electrographic seizures. Epilepsy Res 9:11–18

    Article  PubMed  CAS  Google Scholar 

  • Marescaux C, Vergnes M, Depaulis A (1992) Genetic absence epilepsy in rats from Strasbourg — A review. J Neural Transm 35:37–69

    CAS  Google Scholar 

  • Mattson RH (1995) Selection of antiepileptic drug therapy. In: Levy RH, Mattson RH, Meldrum BS (eds) Antiepileptic drugs. 4th edn, Raven Press, New York, pp. 123–136

    Google Scholar 

  • McNamara JO (1984) Kindling: an animal model of complex partial epilepsy. Ann Neurol 16 [Suppl]:S72–S76

    Article  PubMed  Google Scholar 

  • McNamara JO, Rigsbee LC, Butler LS, Shin C (1989) Intravenous phenytoin is an effective anticonvulsant in the kindling model. Ann Neurol 26:675–678

    Article  PubMed  CAS  Google Scholar 

  • Meldrum B (1996) Action of established and novel anticonvulsant drugs on the basic mechanisms of epilepsy. Epilepsy Res 11 [Suppl]:67–78

    CAS  Google Scholar 

  • Naquet R, Meldrum BS (1972) Photogenic seizures in baboon. In: Purpura DP, Penry JK, Tower D, Woodbury DM, Walter R (eds) Experimental models of epilepsy — A manual for the laboratory worker, Raven Press, New York, pp. 373–406

    Google Scholar 

  • Noebels JL (1979) Analysis of inherited epilepsy using single locus mutations in mice. Fed Proc 38:2405–2410

    PubMed  CAS  Google Scholar 

  • Noebels JL (1986) Mutational analysis of inherited epilepsies. In: Delgado-Escueta AV, Ward AA, Woodbury DM, Porter RJ (eds) Basic mechanisms of epilepsies. Molecular and cellular approaches. Raven Press, New York, pp. 97–114

    Google Scholar 

  • Noebels JL (1996) Using genes to create new models of epilepsy. Epilepsia 37 [Suppl 5]:2

    Google Scholar 

  • Noebels JL, Sidman RL (1979) Inherited epilepsy: spike-wave and focal motor seizure in mutant mouse tottering. Science 204:1334–1336

    Article  PubMed  CAS  Google Scholar 

  • Piredda SG, Woodhead JH, Swinyard EA (1985) Effect of stimulus intensity on the profile of anticonvulsant activity of phenytoin, ethosuximide, and valproate. J Pharmacol Exp Ther 232:741–745

    PubMed  CAS  Google Scholar 

  • Prince DA (1972) Topical convulsant drugs and metabolic antagonists. In: Purpura DP, Penry JK, Tower D, Woodbury DM, Walter R (eds) Experimental models of epilepsy — A manual for the laboratory worker. Raven Press, New York, pp. 51–84

    Google Scholar 

  • Purpura DP, Penry JK, Tower D, Woodbury DM, Walter R (1972) Experimental models of epilepsy — A manual for the laboratory worker. Raven Press, New York

    Google Scholar 

  • Racine RJ (1972) Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroenceph Clin Neurophysiol 32:281–294

    Article  PubMed  CAS  Google Scholar 

  • Racine RJ, Ivy GO, Milgram NW (1989) Kindling: clinical relevance and anatomical substrate. In: Bolwig TG, Trimble MR (eds) The clinical relevance of kindling. Wiley, Chichester, pp. 15–34

    Google Scholar 

  • Reynolds EH (1989) The process of epilepsy: is kindling relevant? In Bolwig TG, Trimble MR (eds) The clinical relevance of kindling. Wiley, Chichester, pp. 149– 160

    Google Scholar 

  • Rinne SP, Bowyer JF, Barrows EB, Killam EK (1978) EEG effects of ethosuximide in Papio papio. Pharmacologist 20:161

    Google Scholar 

  • Rise ML, Frankel WN, Coffin JM, Seyfried TN (1991) Genes for epilepsy mapped in the mouse. Science 253:669–673

    Article  PubMed  CAS  Google Scholar 

  • Rundfeldt C, Hönack D, Löscher W (1990) Phenytoin potently increases the threshold for focal seizures in amygdala-kindled rats. Neuropharmacology 29:845–851

    Article  PubMed  CAS  Google Scholar 

  • Sasa M, Ohno Y, Ujihara H, Fujita Y, Yoshimura M, Takaori S, Serikawa T, Yamada J (1988) Effects of antiepileptic drugs on absence-like and tonic seizures in the spontaneously epileptic rat, a double mutant rat. Epilepsia 29:505–513

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Racine RJ, McIntyre DC (1990) Kindling: basic mechanisms and clinical validity. Electroenceph Clin Neurophysiol 76:459–472

    Article  PubMed  CAS  Google Scholar 

  • Schmidt J (1987) Changes in seizure susceptibility in rats following chronic administration of pentylenetetrazol. Biomed Biochem Acta 46:267–270

    CAS  Google Scholar 

  • Schmidt D (1993) Epilepsien und epileptische Anfälle. Thieme Verlag, Stuttgart

    Google Scholar 

  • Serikawa T, Yamada J (1986) Epileptic seizures in rats homozygous for two mutations, zitter and tremor. J Hered 77:441–444

    PubMed  CAS  Google Scholar 

  • Seyfried TN (1979) Audiogenic seizures in mice. Fed Proc 38:2399–2404

    PubMed  CAS  Google Scholar 

  • Seyfried TN, Glaser GH (1985) A review of mouse mutants as genetic models of epilepsy. Epilepsia 26:143–150

    Article  PubMed  CAS  Google Scholar 

  • Snead OC (1992) Pharmacological models of generalized absence seizures in rodents. J Neural Transm 35 [Suppl]:7–19

    Google Scholar 

  • Speciale J, Dayrell-Hart B, Steinberg SA (1991) Clinical evaluation of gamma-vinyl-gamma-aminobutyric acid for control of epilepsy in dogs. J Am Vet Med Assoc 198:995–1000

    PubMed  CAS  Google Scholar 

  • Sperk G (1994) Kainic acid seizures in the rat. Progr Neurobiol 42:1–32

    Article  CAS  Google Scholar 

  • Stark LG, Killam KF, Killam EK (1970) The anticonvulsant effects of phenobarbitone, diphenylhydantoin and two benzodiazepines in the baboon, Papio papio. J Pharmacol Exp Ther 173:125–132

    PubMed  CAS  Google Scholar 

  • Stumpf C (1962) Pharmakologische Methoden. In: Stumpf C, Petschke H (eds) Erzeugung von Krankheitszuständen durch das Experiment: Zentralnervensystem. Springer-Verlag, Berlin, pp. 1–105

    Google Scholar 

  • Suzuki J, Nakamoto Y (1978) Sensory precipitation epilepsy focus in El mice and Mongolian gerbils. Folia Psychiat Neurol Jpn 32:349–350

    PubMed  CAS  Google Scholar 

  • Sveinsbjornsdottir S, Sander JWAS, Upton D, Thompson PJ, Patsalos PN, Hirt D, Emre M, Lowe D, Duncan JS (1993) The excitatory amino acid antagonist D-CPP-ene (SDZ EAA-494) in patients with epilepsy. Epilepsy Res 16:165–174

    Article  Google Scholar 

  • Swinyard EA (1949) Laboratory assay of clinically effective antiepileptic drugs. J Am Pharm Assoc 38:201–204

    CAS  Google Scholar 

  • Swinyard EA (1969) Laboratory evaluation of antiepileptic drugs. Review of laboratory methods. Epilepsia 10:107–119

    Article  PubMed  CAS  Google Scholar 

  • Swinyard EA (1972) Electrically induced convulsions. In: Purpura DP, Penry JK, Tower D, Woodbury DM, Walter R (eds) Experimental models of epilepsy — A manual for the laboratory worker. Raven Press, New York, pp. 433–458

    Google Scholar 

  • Swinyard EA, Brown WC, Goodman LS (1952) Comparative assay of antiepileptic drugs in mice and rats. J Pharmacol Exp Ther 106:319–330

    PubMed  CAS  Google Scholar 

  • Swinyard EA, Wolf HH, White HS, Skeen GA, Stark LG, Albertson T, Pong SF, Drust EG (1993) Characterization of the anticonvulsant properties of F-721. Epilepsy Res 15:35–45

    Article  PubMed  CAS  Google Scholar 

  • Trimble MR (1991) Epilepsy and behaviour. Epilepsy Res 10:71–79

    Article  PubMed  CAS  Google Scholar 

  • Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA (1989) Review: Cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel model of intractable epilepsy. Synapse 3:154–171

    Article  PubMed  CAS  Google Scholar 

  • Voskuyl RA, Dingemanse J, Danhof M (1989) Determination of the threshold for convulsions by direct cortical stimulation. Epilepsy Res 3:120–129

    Article  PubMed  CAS  Google Scholar 

  • Voskuyl RA, Hoogerkamp A, Danhof M (1992) Properties of the convulsive threshold determined by direct cortical stimulation in rats. Epilepsy Res 12:111–120

    Article  PubMed  CAS  Google Scholar 

  • Ward AAJ (1972) Topical convulsant metals. In: Purpura DP, Penry JK, Tower D, Woodbury DM, Walter R (eds) Experimental models of epilepsy — A manual for the laboratory worker. Raven Press, New York, pp. 13–36

    Google Scholar 

  • White HS, Woodhead JH, Franklin MR, Swinyard EA, Wolf HH (1995) Experimental selection, quantification, and evaluation of antiepileptic drugs. In: Levy RH, Mattson RH, Meldrum BS (eds) Antiepileptic drugs. 4th edn, Raven Press, New York, pp. 99–110

    Google Scholar 

  • Williams SF, Colling SB, Whittington MA, Jefferys JG (1993) Epileptic focus induced by intrahippocampal cholera toxin in rat: time course and properties in vivo and in vitro. Epilepsy Res 16:137–146

    Article  PubMed  CAS  Google Scholar 

  • Woodbury DM (1972) Applications to drug evaluations. In: Purpura DP, Penry JK, Tower D, Woodbury DM, Walter R (eds) Experimental models of epilepsy — A manual for the laboratory worker. Raven Press, New York, pp. 557–584

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Löscher, W. (1999). Animal Models of Epilepsy and Epileptic Seizures. In: Eadie, M.J., Vajda, F.J.E. (eds) Antiepileptic Drugs. Handbook of Experimental Pharmacology, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60072-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60072-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64244-9

  • Online ISBN: 978-3-642-60072-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics