Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8066))

Abstract

In 1985, Sleator and Tarjan introduced the splay tree, a self-adjusting binary search tree algorithm. Splay trees were conjectured to perform within a constant factor as any offline rotation-based search tree algorithm on every sufficiently long sequence—any binary search tree algorithm that has this property is said to be dynamically optimal. However, currently neither splay trees nor any other tree algorithm is known to be dynamically optimal. Here we survey the progress that has been made in the almost thirty years since the conjecture was first formulated, and present a binary search tree algorithm that is dynamically optimal if any binary search tree algorithm is dynamically optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta-algorithm and applications. Theory of Computing 8(1), 121–164 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allenand, B., Ian Munro, J.: Self-organizing binary search trees. J. ACM 25(4), 526–535 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Badoiu, M., Cole, R., Demaine, E.D., Iacono, J.: A unified access bound on comparison-based dynamic dictionaries. Theor. Comput. Sci. 382(2), 86–96 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bose, P., Collette, S., Fagerberg, R., Langerman, S.: De-amortizing binary search trees. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 121–132. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Blum, A., Chawla, S., Kalai, A.: Static optimality and dynamic search-optimality in lists and trees. Algorithmica 36(3), 249–260 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bose, P., Douïeb, K., Iacono, J., Langerman, S.: The power and limitations of static binary search trees with lazy finger. CoRR, abs/1304.6897 (2013)

    Google Scholar 

  7. Cole, R., Mishra, B., Schmidt, J.P., Siegel, A.: On the dynamic finger conjecture for splay trees. part i: Splay sorting log n-block sequences. SIAM J. Comput. 30(1), 1–43 (2000)

    Article  MATH  Google Scholar 

  8. Cole, R.: On the dynamic finger conjecture for splay trees. part ii: The proof. SIAM J. Comput. 30(1), 44–85 (2000)

    Article  MATH  Google Scholar 

  9. Derryberry, J.: Adaptive Binary Search Trees. PhD thesis, CMU (2009)

    Google Scholar 

  10. Demaine, E.D., Harmon, D., Iacono, J., Kane, D.M., Patrascu, M.: The geometry of binary search trees. In: Mathieu, C. (ed.) SODA, pp. 496–505. SIAM (2009)

    Google Scholar 

  11. Demaine, E.D., Harmon, D., Iacono, J., Patrascu, M.: Dynamic optimality - almost. SIAM J. Comput. 37(1), 240–251 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Demaine, E.D., Iacono, J., Langerman, S., Özkan, Ö.: Combining binary search trees. CoRR, abs/1304.7604 (2013)

    Google Scholar 

  13. Derryberry, J.C., Sleator, D.D.: Skip-splay: Toward achieving the unified bound in the bst model. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 194–205. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Fox, K.: Upper bounds for maximally greedy binary search trees. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 411–422. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Harmon, D.: New Bounds on Optimal Binary Search Trees. PhD thesis, MIT (2006)

    Google Scholar 

  16. Lucas, J.M.: Canonical forms for competitive binary search tree algorithms. Technical Report DCS-TR-250, Rutgers University (1988)

    Google Scholar 

  17. Sleator, D.: Achieving the unified bound in the bst model. In: 5th Bertinoro Workshop on Algorithms and Data Structures. Talk (2011)

    Google Scholar 

  18. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2), 202–208 (1985)

    Article  MathSciNet  Google Scholar 

  19. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–686 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Subramanian, A.: An explanation of splaying. J. Algorithms 20(3), 512–525 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wilber, R.E.: Lower bounds for accessing binary search trees with rotations. SIAM J. Comput. 18(1), 56–67 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iacono, J. (2013). In Pursuit of the Dynamic Optimality Conjecture. In: Brodnik, A., López-Ortiz, A., Raman, V., Viola, A. (eds) Space-Efficient Data Structures, Streams, and Algorithms. Lecture Notes in Computer Science, vol 8066. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40273-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40273-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40272-2

  • Online ISBN: 978-3-642-40273-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics