Skip to main content

Approximating Barrier Resilience for Arrangements of Non-identical Disk Sensors

  • Conference paper
Algorithms for Sensor Systems (ALGOSENSORS 2012)

Abstract

Let \(\mathcal{A}\) be an arrangement of n sensors constituting a barrier between two regions S and T. The resilience of \(\mathcal{A}\) with respect to S and T, denoted \(\rho (\mathcal{A},S,T)\), is defined as the number of sensors in \(\mathcal{A}\) that must be removed in order for there to be an Sā€‰āˆ’ā€‰T path that is not detected by any sensor. We introduce the Multi-Path Algorithm (MPA) and show that it guarantees a 2-approximation of \(\rho (\mathcal{A},S,T)\) in time polynomial in n when sensors are unit disks in a two dimensional plane; this tightens to a 1.5-approximation when S and T are moderately well-separated. We also define a generalization of \(\rho (\mathcal{A},S,T)\) denoted \(\rho_{c} (\mathcal{A},S,T)\), which is the resilience of the barrier if regions covered by more than c distinct sensors in the original arrangement are treated as inaccessible. Then when the unit size constraint is relaxed, we prove that the MPA can still guarantee a 2-approximation of \(\rho_{c} (\mathcal{A},S,T)\) for any constant c in time polynomial in n for arrangements of approximately equal-sized sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.: Coverage problems in wireless ad-hoc sensor networks. In: Proceedings of the Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2001, vol.Ā 3, pp. 1380ā€“1387. IEEE (2001)

    Google ScholarĀ 

  2. Cardei, M., Wu, J.: Coverage in wireless sensor networks. In: Ilyas, M., Mahgoub, I. (eds.) Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems, pp. 432ā€“446. CRC Press (2005)

    Google ScholarĀ 

  3. Kumar, S.: Foundations of coverage in wireless sensor networks. PhD thesis, The Ohio State University (2006)

    Google ScholarĀ 

  4. DuttaGupta, A., Bishnu, A., Sengupta, I.: Maximal Breach in Wireless Sensor Networks: Geometric Characterization and Algorithms. In: Kutyłowski, M., Cichoń, J., Kubiak, P. (eds.) ALGOSENSORS 2007. LNCS, vol.Ā 4837, pp. 126ā€“137. Springer, Heidelberg (2008)

    ChapterĀ  Google ScholarĀ 

  5. Megerian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.: Worst and best-case coverage in sensor networks. IEEE Transactions on Mobile ComputingĀ 4(1), 84ā€“92 (2005)

    ArticleĀ  Google ScholarĀ 

  6. Cao, W., He, T.: Barrier coverage of wireless sensor networks based on clifford algebra. In: International Symposium on Computer Science and Computational Technology, ISCSCT 2008, vol.Ā 2, pp. 49ā€“52 (December 2008)

    Google ScholarĀ 

  7. DuttaGupta, A., Bishnu, A., Sengupta, I.: Optimisation Problems Based on the Maximal Breach Path Measure for Wireless Sensor Network Coverage. In: Madria, S.K., Claypool, K.T., Kannan, R., Uppuluri, P., Gore, M.M. (eds.) ICDCIT 2006. LNCS, vol.Ā 4317, pp. 27ā€“40. Springer, Heidelberg (2006)

    ChapterĀ  Google ScholarĀ 

  8. Mehta, D., Lopez, M., Lin, L.: Optimal coverage paths in ad-hoc sensor networks. In: IEEE International Conference on Communications, ICC 2003, vol.Ā 1, pp. 507ā€“511 (May 2003)

    Google ScholarĀ 

  9. Megerian, S., Koushanfar, F., Qu, G., Veltri, G., Potkonjak, M.: Exposure in wireless sensor networks: Theory and practical solutions. Wireless NetworksĀ 8, 443ā€“454 (2002), doi:10.1023/A:1016586011473

    ArticleĀ  MATHĀ  Google ScholarĀ 

  10. Meguerdichian, S., Koushanfar, F., Qu, G., Potkonjak, M.: Exposure in wireless ad-hoc sensor networks. In: Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, MobiCom 2001, pp. 139ā€“150. ACM, New York (2001)

    ChapterĀ  Google ScholarĀ 

  11. Veltri, G., Huang, Q., Qu, G., Potkonjak, M.: Minimal and maximal exposure path algorithms for wireless embedded sensor networks. In: Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, SenSys 2003, pp. 40ā€“50. ACM, New York (2003)

    ChapterĀ  Google ScholarĀ 

  12. Liu, L., Zhang, X., Ma, H.: Minimal exposure path algorithms for directional sensor networks. In: Global Telecommunications Conference, GLOBECOM 2009, November 30-December 4, pp. 1ā€“6. IEEE (2009)

    Google ScholarĀ 

  13. Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. In: Proceedings of the 11th Annual International Conference on Mobile Computing and Networking, MobiCom 2005, pp. 284ā€“298. ACM, New York (2005)

    ChapterĀ  Google ScholarĀ 

  14. Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. Wireless NetworksĀ 13, 817ā€“834 (2007), doi:10.1007/s11276-006-9856-0

    ArticleĀ  Google ScholarĀ 

  15. Bereg, S., Kirkpatrick, D.: Approximating Barrier Resilience in Wireless Sensor Networks. In: Dolev, S. (ed.) ALGOSENSORS 2009. LNCS, vol.Ā 5804, pp. 29ā€“40. Springer, Heidelberg (2009)

    ChapterĀ  Google ScholarĀ 

  16. Tseng, K.-C.R., Kirkpatrick, D.: On Barrier Resilience of Sensor Networks. In: Erlebach, T., Nikoletseas, S., Orponen, P. (eds.) ALGOSENSORS 2011. LNCS, vol.Ā 7111, pp. 130ā€“144. Springer, Heidelberg (2012)

    ChapterĀ  Google ScholarĀ 

  17. Tseng, K.C.R.: Resilience of wireless sensor networks. Masterā€™s thesis, The University of British Columbia (2011)

    Google ScholarĀ 

  18. Chan, D.Y.C.: Approximating barrier resilience and related notions for disk sensors in a two-dimensional plane. Masterā€™s thesis, The University of British Columbia (2012)

    Google ScholarĀ 

  19. Rosenberger, H.: Order-k voronoi diagrams of sites with additive weights in the plane. AlgorithmicaĀ 6, 490ā€“521 (1991)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chan, D.Y.C., Kirkpatrick, D. (2013). Approximating Barrier Resilience for Arrangements of Non-identical Disk Sensors. In: Bar-Noy, A., HalldĆ³rsson, M.M. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2012. Lecture Notes in Computer Science, vol 7718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36092-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36092-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36091-6

  • Online ISBN: 978-3-642-36092-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics