Skip to main content

Self-organising Pervasive Ecosystems: A Crowd Evacuation Example

  • Conference paper
Software Engineering for Resilient Systems (SERENE 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6968))

Included in the following conference series:

Abstract

The dynamics of pervasive ecosystems are typically highly unpredictable, and therefore self-organising approaches are often exploited to make their applications resilient to changes and failures. The SAPERE approach we illustrate in this paper aims at addressing this issue by taking inspiration from natural ecosystems, which are regulated by a limited set of “laws” evolving the population of individuals in a self-organising way. Analogously, in our approach, a set of so-called eco-laws coordinate the individuals of the pervasive computing system (humans, devices, signals), in a way that is shown to be expressive enough to model and implement interesting real-life scenarios. We exemplify the proposed framework discussing a crowd evacuation application, tuning and validating it by simulation.

This work has been supported by the EU-FP7-FET Proactive project SAPERE—Self-aware Pervasive Service Ecosystems, under contract no.256873.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Autili, M., Di Benedetto, P., Inverardi, P.: Context-aware adaptive services: The PLASTIC approach. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 124–139. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Banâtre, J.P., Priol, T.: Chemical programming of future service-oriented architectures. Journal of Software 4, 738–746 (2009)

    Article  Google Scholar 

  3. Berry, G., Boudol, G.: The chemical abstract machine. In: POPL, pp. 81–94 (1990)

    Google Scholar 

  4. Casadei, M., Gardelli, L., Viroli, M.: Simulating emergent properties of coordination in Maude: the collective sort case. In: Proceedings of FOCLASA 2006. Electronic Notes in Theoretical Computer Science, vol. 175(2), pp. 59–80. Elsevier Science B.V., Amsterdam (2007)

    Google Scholar 

  5. Ciocchetta, F., Duguid, A., Guerriero, M.L.: A compartmental model of the cAMP/PKA/MAPK pathway in Bio-PEPA. CoRR abs/0911.4984 (2009)

    Google Scholar 

  6. Costa, P.D., Guizzardi, G., Almeida, J.P.A., Pires, L.F., van Sinderen, M.: Situations in conceptual modeling of context. In: EDOC 2006, p. 6. IEEE-CS, Los Alamitos (2006)

    Google Scholar 

  7. Fernandez-Marquez, J.L., Arcos, J.L., Di Marzo Serugendo, G., Viroli, M., Montagna, S.: Description and composition of bio-inspired design patterns: the gradient case. In: Proceedings of the 3rd Workshop on Bio-Inspired and Self-* Algorithms for Distributed Systems, ACM, Karlsruhe (2011)

    Google Scholar 

  8. Fok, C.L., Roman, G.C., Lu, C.: Enhanced coordination in sensor networks through flexible service provisioning. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 66–85. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. The Journal of Physical Chemistry A 104(9), 1876–1889 (2000)

    Article  Google Scholar 

  10. Iliasov, A., Laibinis, L., Romanovsky, A., Sere, K., Troubitsyna, E.: Towards rigorous engineering of resilient pervasive systems. In: Proceedings of Seventh European Dependable Computing Conference, IEEE Computer Society, Los Alamitos (2008)

    Google Scholar 

  11. Macal, C.M., North, M.J.: Tutorial on agent-based modelling and simulation. Journal of Simulation 4, 151–162 (2010)

    Article  Google Scholar 

  12. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applications: The tota approach. ACM Trans. Softw. Eng. Methodol. 18(4), 1–56 (2009)

    Article  Google Scholar 

  13. Montagna, S., Viroli, M.: A framework for modelling and simulating networks of cells. In: Proceedings of the CS2Bio 2010 Workshop. ENTCS, vol. 268, pp. 115–129. Elsevier Science B.V, Amsterdam (2010)

    Google Scholar 

  14. Murphy, A.L., Picco, G.P., Roman, G.C.: Lime: A model and middleware supporting mobility of hosts and agents. ACM Trans. on Software Engineering and Methodology 15(3), 279–328 (2006)

    Article  Google Scholar 

  15. Omicini, A., Zambonelli, F.: Coordination for Internet application development. In: Autonomous Agents and Multi-Agent Systems, vol. 2(3), pp. 251–269 (September 1999), special Issue: Coordination Mechanisms for Web Agents, http://springerlink.metapress.com/content/uk519681t1r38301/

  16. Paun, G.: Membrane Computing: An Introduction. Springer-Verlag New York, Inc., Secaucus (2002)

    Book  MATH  Google Scholar 

  17. Priami, C.: Stochastic pi-calculus. The Computer Journal 38(7), 578–589 (1995)

    Article  Google Scholar 

  18. Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based simulation platforms: Review and development recommendations. Simulation 82(9), 609–623 (2006)

    Article  Google Scholar 

  19. Román, M., Hess, C.K., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrstedt, K.: Gaia: a middleware platform for active spaces. Mobile Computing and Communications Review 6(4), 65–67 (2002)

    Article  Google Scholar 

  20. Roy, P.V., Haridi, S., Reinefeld, A., Stefany, J.B.: Self management for large-scale distributed systems: An overview of the SELFMAN project. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 153–178. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Tchao, A., Risoldi, M., Di Marzo Serugendo, G.: Modeling self-* systems using chemically-inspired composable patterns. In: Proceedings of the 5th IEEE International Conference on Self-Adaptive and Self-Organizing Systems. IEEE-CS, Los Alamitos (2011)

    Google Scholar 

  22. Viroli, M., Casadei, M.: Biochemical tuple spaces for self-organising coordination. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 143–162. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Viroli, M., Casadei, M., Montagna, S., Zambonelli, F.: Spatial coordination of pervasive services through chemical-inspired tuple spaces. ACM Transactions on Autonomous and Adaptive Systems 6(2), 14:1–14:24 (2011)

    Article  Google Scholar 

  24. Viroli, M., Zambonelli, F.: A biochemical approach to adaptive service ecosystems. Information Sciences 180(10), 1876–1892 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Montagna, S., Viroli, M., Risoldi, M., Pianini, D., Di Marzo Serugendo, G. (2011). Self-organising Pervasive Ecosystems: A Crowd Evacuation Example. In: Troubitsyna, E.A. (eds) Software Engineering for Resilient Systems. SERENE 2011. Lecture Notes in Computer Science, vol 6968. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24124-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24124-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24123-9

  • Online ISBN: 978-3-642-24124-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics