Skip to main content

Quality of Similarity Rankings in Time Series

  • Conference paper
Book cover Advances in Spatial and Temporal Databases (SSTD 2011)

Abstract

Time series data objects can be interpreted as high- dimensional vectors, which allows the application of many traditional distance measures as well as more specialized measures. However, many distance functions are known to suffer from poor contrast in high-dimensional settings, putting their usefulness as similarity measures into question. On the other hand, shared-nearest-neighbor distances based on the ranking of data objects induced by some primary distance measure have been known to lead to improved performance in high-dimensional settings. In this paper, we study the performance of shared-neighbor similarity measures in the context of similarity search for time series data objects. Our findings are that the use of shared-neighbor similarity measures generally results in more stable performances than that of their associated primary distance measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berndt, D., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD Workshop (1994)

    Google Scholar 

  2. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proc. ICDE (2002)

    Google Scholar 

  3. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: Proc. SIGMOD (2005)

    Google Scholar 

  4. Chen, L., Ng, R.: On the marriage of Lp-norms and edit distance. In: Proc. VLDB (2004)

    Google Scholar 

  5. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730. Springer, Heidelberg (1993)

    Google Scholar 

  6. Yi, B.K., Jagadish, H., Faloutsos, C.: Fast time sequence indexing for arbitrary Lp norms. In: Proc. VLDB (2000)

    Google Scholar 

  7. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE TC 23(1), 90–93 (1974)

    MATH  Google Scholar 

  8. Chan, K.P., Fu, A.W.C.: Efficient time series matching by wavelets. In: Proc. ICDE, pp. 126–133 (1999)

    Google Scholar 

  9. Cai, Y., Ng, R.: Index spatio-temporal trajectories with Chebyshev polynomials. In: Proc. SIGMOD (2004)

    Google Scholar 

  10. Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. IEEE TKDD 3(1), 1–58 (2009)

    Article  Google Scholar 

  11. Jarvis, R.A., Patrick, E.A.: Clustering using a similarity measure based on shared near neighbors. IEEE TC C-22(11), 1025–1034 (1973)

    Google Scholar 

  12. Ertöz, L., Steinbach, M., Kumar, V.: Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In: Proc. SDM (2003)

    Google Scholar 

  13. Houle, M.E.: The relevant-set correlation model for data clustering. Stat. Anal. Data Min. 1(3), 157–176 (2008)

    Article  Google Scholar 

  14. Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: Outlier detection in axis-parallel subspaces of high dimensional data. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 831–838. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Houle, M.E., Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: Can shared-neighbor distances defeat the curse of dimensionality? In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 482–500. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Houle, M.E.: Navigating massive data sets via local clustering. In: Proc. KDD (2003)

    Google Scholar 

  17. Achtert, E., Bernecker, T., Kriegel, H.P., Schubert, E., Zimek, A.: ELKI in time: ELKI 0.2 for the performance evaluation of distance measures for time series. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 436–440. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Keogh, E., Xi, X., Wei, L., Ratanamahatana, C.A.: The UCR time series classification/clustering homepage (2006), http://www.cs.ucr.edu/~eamonn/time_series_data/

  19. Saito, N.: Local feature extraction and its application using a library of bases. PhD thesis, Yale University (1994)

    Google Scholar 

  20. Pham, D.T., Chan, A.B.: Control chart pattern recognition using a new type of self-organizing neural network. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 212(2), 115–127 (1998)

    Google Scholar 

  21. Gandhi, A.: Content-based image retrieval: Plant species identification. Master’s thesis, Oregon State University (2002)

    Google Scholar 

  22. Davis, S., Jacobson, A., Suszcynsky, D., Cai, M., Eads, D.: FORTE forte time series dataset (2005), http://nis-www.lanl.gov/~eads/datasets/forte

  23. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor” meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  24. Hinneburg, A., Aggarwal, C.C., Keim, D.A.: What is the nearest neighbor in high dimensional spaces? In: Proc. VLDB (2000)

    Google Scholar 

  25. Aggarwal, C.C., Hinneburg, A., Keim, D.: On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, p. 420. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  26. Chakrabarti, K., Keogh, E., Mehrotra, S., Pazzani, M.: Locally adaptive dimensionality reduction for indexing large time series databases. ACM TODS 27(2), 188–228 (2002)

    Article  Google Scholar 

  27. Verleysen, M., François, D.: The curse of dimensionality in data mining and time series prediction. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 758–770. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  28. Radovanovic, M., Nanopoulos, A., Ivanovic, M.: Time-series classification in many intrinsic dimensions. In: Proc. SDM (2010)

    Google Scholar 

  29. Radovanovic, M., Nanopoulos, A., Ivanovic, M.: Hubs in space: Popular nearest neighbors in high-dimensional data. J. Mach. Learn. Res. 11, 2487–2531 (2010)

    MATH  Google Scholar 

  30. Bennett, K.P., Fayyad, U., Geiger, D.: Density-based indexing for approximate nearest-neighbor queries. In: Proc. KDD (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bernecker, T. et al. (2011). Quality of Similarity Rankings in Time Series. In: Pfoser, D., et al. Advances in Spatial and Temporal Databases. SSTD 2011. Lecture Notes in Computer Science, vol 6849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22922-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22922-0_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22921-3

  • Online ISBN: 978-3-642-22922-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics