Skip to main content

Soft Tissue Discrimination Using Magnetic Resonance Elastography with a New Elastic Level Set Model

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2010)

Abstract

Magnetic resonance elastography (MRE) noninvasively images the propagation of mechanical waves within soft tissues. The elastic properties of soft tissues can then be quantified from MRE wave snapshots. Various algorithms have been proposed to obtain their inversion for soft tissue elasticity. Anomalies are assumed to be discernible in the elasticity map. We propose a new elastic level set model to directly detect and track abnormal soft tissues in MRE wave images. It is derived from the Mumford-Shah functional, and employs partial differential equations for function modeling and smoothing. This level set model can interpret MRE wave images without elasticity reconstruction. The experimental results on synthetic and real MRE wave images confirm its effectiveness for soft tissue discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Greenleaf, J.F., Fatemi, M., Insana, M.: Selected methods for imaging elastic properties of biological tissues. Annual Review on Biomedical Engineering 5, 57–78 (2003)

    Article  Google Scholar 

  2. Manduca, A., Oliphant, T.E., Dresner, M.A., Mahowald, J.L., Kruse, S.A., Amromin, E., Felmlee, J.P., Greenleaf, J.F., Ehman, R.L.: Magnetic resonance elastography: Non-invasive mapping of tissue elasticity. Medical Image Analysis 5, 237–254 (2001)

    Article  Google Scholar 

  3. Manduca, A., Muthupillai, R., Rossman, P.J., Greenleaf, J.F., Ehman, R.L.: Image processing for magnetic resonance elastography. In: Proc. SPIE, vol. 2710, pp. 616–623 (1996)

    Google Scholar 

  4. Oliphant, T.E., Manduca, A., Ehman, R.L., Greenleaf, J.F.: Complex-valued stiffness reconstruction for magnetic resonance elastography by algebraic inversion of the differential equation. Magnetic Resonance in Medicine 45, 299–310 (2001)

    Article  Google Scholar 

  5. Kwon, O.I., Park, C., Nam, H.S., Woo, E.J., Seo, J.K., Glaser, K.J., Manduca, A., Ehman, R.L.: Shear modulus decomposition algorithm in magnetic resonance elastography. IEEE Transactions on Medical Imaging 28(10), 1526–1533 (2009)

    Article  Google Scholar 

  6. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  7. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, New York (1999)

    MATH  Google Scholar 

  8. McLaughlin, J., Renzi, D.: Using level set based inversion of arrival times to recover shear wave speed in transient elastography and supersonic imaging. Inverse Problems 22, 707–725 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ammari, H., Garapon, P., Kang, H., Lee, H.: A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements. Quarterly of Applied Mathematics 66(1), 139–175 (2008)

    MATH  MathSciNet  Google Scholar 

  10. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  11. Tsai, A., Yezzi, A., Willsky, A.S.: Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Transactions on Image Processing 10(8), 1169–1185 (2001)

    Article  MATH  Google Scholar 

  12. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commu. Pure Appl. Math. 42, 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Manduca, A., Lake, D.S., Kruse, S.A., Ehman, R.L.: Spatio-temporal directional filtering for improved inversion of MR elastography images. Medical Image Analysis 7, 465–473 (2003)

    Article  Google Scholar 

  14. Grimm, R.C., Lake, D.S., Manduca, A., Ehman, R.L.: MRE/Wave. Mayo Clinics, Rochester, MN, USA, http://mayoresearch.mayo.edu/ehman_lab/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, B.N. et al. (2010). Soft Tissue Discrimination Using Magnetic Resonance Elastography with a New Elastic Level Set Model. In: Wang, F., Yan, P., Suzuki, K., Shen, D. (eds) Machine Learning in Medical Imaging. MLMI 2010. Lecture Notes in Computer Science, vol 6357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15948-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15948-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15947-3

  • Online ISBN: 978-3-642-15948-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics