Skip to main content

GPGCD, an Iterative Method for Calculating Approximate GCD, for Multiple Univariate Polynomials

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6244))

Included in the following conference series:

Abstract

We present an extension of our GPGCD method, an iterative method for calculating approximate greatest common divisor (GCD) of univariate polynomials, to multiple polynomial inputs. For a given pair of polynomials and a degree, our algorithm finds a pair of polynomials which has a GCD of the given degree and whose coefficients are perturbed from those in the original inputs, making the perturbations as small as possible, along with the GCD. In our GPGCD method, the problem of approximate GCD is transferred to a constrained minimization problem, then solved with the so-called modified Newton method, which is a generalization of the gradient-projection method, by searching the solution iteratively. In this paper, we extend our method to accept more than two polynomials with the real coefficients as an input.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckermann, B., Labahn, G.: A fast and numerically stable Euclidean-like algorithm for detecting relatively prime numerical polynomials. J. Symbolic Comput. 26(6), 691–714 (1998), Symbolic numeric algebra for polynomials

    Article  MathSciNet  MATH  Google Scholar 

  2. Sasaki, T., Noda, M.T.: Approximate square-free decomposition and root-finding of ill-conditioned algebraic equations. J. Inform. Process. 12(2), 159–168 (1989)

    MathSciNet  MATH  Google Scholar 

  3. Schönhage, A.: Quasi-gcd computations. J. Complexity 1(1), 118–137 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Corless, R.M., Gianni, P.M., Trager, B.M., Watt, S.M.: The singular value decomposition for polynomial systems. In: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, pp. 195–207. ACM, New York (1995)

    Chapter  Google Scholar 

  5. Emiris, I.Z., Galligo, A., Lombardi, H.: Certified approximate univariate GCDs. J. Pure Appl. Algebra 117/118, 229–251 (1997), Algorithms for algebra (Eindhoven, 1996)

    Google Scholar 

  6. Corless, R.M., Watt, S.M., Zhi, L.: QR factoring to compute the GCD of univariate approximate polynomials. IEEE Trans. Signal Process. 52(12), 3394–3402 (2004)

    Article  MathSciNet  Google Scholar 

  7. Zarowski, C.J., Ma, X., Fairman, F.W.: QR-factorization method for computing the greatest common divisor of polynomials with inexact coefficients. IEEE Trans. Signal Process. 48(11), 3042–3051 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhi, L.: Displacement structure in computing approximate GCD of univariate polynomials. In: Computer mathematics: Proc. Six Asian Symposium on Computer Mathematics (ASCM 2003), River Edge, NJ. Lecture Notes Ser. Comput., vol. 10, pp. 288–298. World Sci. Publ. (2003)

    Google Scholar 

  9. Pan, V.Y.: Computation of approximate polynomial GCDs and an extension. Inform. and Comput. 167(2), 71–85 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chin, P., Corless, R.M., Corliss, G.F.: Optimization strategies for the approximate GCD problem. In: Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation, pp. 228–235. ACM, New York (1998) (electronic)

    Chapter  Google Scholar 

  11. Kaltofen, E., Yang, Z., Zhi, L.: Approximate greatest common divisors of several polynomials with linearly constrained coefficients and singular polynomials. In: Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation, pp. 169–176. ACM, New York (2006)

    Chapter  Google Scholar 

  12. Kaltofen, E., Yang, Z., Zhi, L.: Structured low rank approximation of a Sylvester matrix. In: Wang, D., Zhi, L. (eds.) Symbolic-Numeric Computation. Trends in Mathematics, pp. 69–83. Birkhäuser, Basel (2007)

    Chapter  Google Scholar 

  13. Karmarkar, N.K., Lakshman, Y.N.: On approximate GCDs of univariate polynomials. J. Symbolic Comput. 26(6), 653–666 (1998), Symbolic numeric algebra for polynomials

    Article  MathSciNet  MATH  Google Scholar 

  14. Zeng, Z.: The approximate GCD of inexact polynomials, Part I: a univariate algorithm (extended abstract), 8 p. (2004) (preprint)

    Google Scholar 

  15. Ohsako, N., Sugiura, H., Torii, T.: A stable extended algorithm for generating polynomial remainder sequence. Trans. Japan Soc. Indus. Appl. Math. 7(3), 227–255 (1997) (in Japanese)

    Google Scholar 

  16. Sanuki, M., Sasaki, T.: Computing approximate GCDs in ill-conditioned cases. In: SNC 2007: Proceedings of the 2007 International Workshop on Symbolic-Numeric Computation, pp. 170–179. ACM, New York (2007)

    Google Scholar 

  17. Terui, A.: An iterative method for calculating approximate GCD of univariate polynomials. In: Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation, pp. 351–358. ACM Press, New York (2009)

    Chapter  Google Scholar 

  18. Tanabe, K.: A geometric method in nonlinear programming. J. Optim. Theory Appl. 30(2), 181–210 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rosen, J.B.: The gradient projection method for nonlinear programming. II. Nonlinear constraints. J. Soc. Indust. Appl. Math. 9, 514–532 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rupprecht, D.: An algorithm for computing certified approximate GCD of n univariate polynomials. J. Pure Appl. Algebra 139, 255–284 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Terui, A.: GPGCD, an iterative method for calculating approximate GCD of univariate polynomials, with the complex coefficients. In: Proceedings of the Joint Conference of ASCM 2009 and MACIS 2009. COE Lecture Note., Faculty of Mathematics, vol. 22, pp. 212–221. Kyushu University (December 2009)

    Google Scholar 

  22. Demmel, J.W.: Applied numerical linear algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1997)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Terui, A. (2010). GPGCD, an Iterative Method for Calculating Approximate GCD, for Multiple Univariate Polynomials. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2010. Lecture Notes in Computer Science, vol 6244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15274-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15274-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15273-3

  • Online ISBN: 978-3-642-15274-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics