Skip to main content

Toward the Generation of Isolated Attosecond Pulses in the Water Window

  • Chapter
  • First Online:
Progress in Ultrafast Intense Laser Science VI

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 99))

  • 698 Accesses

Abstract

The coherent attosecond pulse in the water-window spectral region could be a powerful tool for studying the ultrafast electronic dynamics of biological samples in water. We propose a scheme to generate isolated attosecond pulses in water-window region, by exploring the high-order harmonic generation in helium atoms driven by a multicycle two-color optical field synthesized with an intense 2,000 nm, 20 fs pulse and its detuned frequency doubled pulse. The calculations show that isolated 67 as pulses in the water-window can be produced in this way. We also describe how to generate such a driving laser pulse with stabilized carrier-envelop phase from a two-stage optical parametric amplifier. With a pump source at 800 nm, the output pulse is tunable from 1.2 to 2. 4 μm, and the output average power is 1.2 W for 1. 5 – 1. 7 μm region. Due to the differential frequency process, the output infrared pulse is self-phase-stabilized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, F. Krausz, Nature 419, 803–807 (2002)

    Article  ADS  Google Scholar 

  2. T. Brabec, F. Rev. Mod. Phys. 72, 545–591 (2000)

    Article  ADS  Google Scholar 

  3. I.J. Sola, E. Mével, L. Elouga, E. Constant, V. Strelkov, L. Poletto, P. Villoresi, E. Benedetti, J.-P. Caumes, S. Stagira, C. Vozzi, G. Sansone, M. Nisoli, Nat. Phys. 2, 319–322 (2006)

    Article  Google Scholar 

  4. T. Pfeifer, L. Gallmann, M.J. Abel, D.M. Neumark, S.R. Opt. Lett. 31, 975 (2006)

    Google Scholar 

  5. P.B. Corkum, Phys. Rev. Lett. 71, 1994–1997 (1993)

    Article  ADS  Google Scholar 

  6. P.M. Paul, E.S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H.G. Muller, P. Agostini, Science 292, 1689–1692 (2001)

    Article  ADS  Google Scholar 

  7. S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, Ch. Spielmann, F. Krausz, K. Ferencz, Opt. Lett. 22, 1562–1564 (1997)

    Article  ADS  Google Scholar 

  8. E. Goulielmakis, M. Schultze, M. Hofstetter, V.S. Yakovlev, J. Gagnon, M. Uiberacker, A.L. Aquila, E.M. Gullikson, D.T. Attwood, R. Kienberger, F. Krausz, U. Kleineberg, Science 320, 1614–1617 (2008)

    Article  ADS  Google Scholar 

  9. Z. Zeng, Y. Cheng, X. Song, R. Li, Z. Xu, Phys. Rev. Lett. 98, 203901 (2007)

    Article  ADS  Google Scholar 

  10. H. Merdji, T. Auguste, W. Boutu, J.-P. Caumes, B. Carré, T. Pfeifer, A. Jullien, D.M. Neumark, S.R. Leone, Opt. Lett. 32, 3134–3136 (2007)

    Article  ADS  Google Scholar 

  11. Z. Zeng, Y. Leng, R. Li, Z. Xu, J. Phys. B 41, 215601 (2008)

    Article  ADS  Google Scholar 

  12. Ch. Spielmann, N.H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, F. Krausz, Science 278, 661–664 (1997)

    Article  ADS  Google Scholar 

  13. C. Vozzi, F. Calegari, E. Benedetti, S. Gasilov, G. Sansone, G. Cerullo, M. Nisoli, S. De Silvestri, S. Stagira, Opt. Lett. 32, 2957–2959 (2007)

    Article  ADS  Google Scholar 

  14. P. Zou, R. Li, Z. Zeng, H. Xiong, P. Liu, Y. Leng, P. Fan, Z. Xu, Chin. Phys. B. 19, 019501 (2010)

    Article  ADS  Google Scholar 

  15. M. Lewenstein, Ph. Balcou, M.Y. Ivanov, A. L’Huillier, P.B. Corkum, Phys. Rev. A 49, 2117–2132 (1994)

    Article  ADS  Google Scholar 

  16. C. Kan, C.E. Capjack, R. Rankin, N.H. Burnett, Phys. Rev. A 52, R4336–R4339 (1995)

    Article  ADS  Google Scholar 

  17. M.V. Ammosov, N.B. Delone, V.P. Krainov, Sov. Phys. JETP 64, 1191–1194 (1986)

    Google Scholar 

  18. X.M. Tong, S-I. Chu, Phys. Rev. A 61, 021802 (2000)

    Google Scholar 

  19. J.J. Carrera, X.M. Tong, S-I. Chu, Phys. Rev. A 74, 023404 (2006)

    Google Scholar 

  20. L. Cohen, Time-Frequency Analysis, chap. ??. (Prentice Hall, Englewood Cliffs, 1995)

    Google Scholar 

  21. A. Baltuška, T. Fuji, T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002)

    Article  ADS  Google Scholar 

  22. C. Vozzi, C. Manzoni, F. Calegari, E. Benedetti, G. Sansone, G. Cerullo, M. Nisoli, S. De Silvestri, S. Stagira, J. Opt. Soc. Am. B 25, 112–117 (2008)

    Article  ADS  Google Scholar 

  23. C. Vozzi, F. Calegari, F. Frassetto, L. Poletto, G. Sansone, P. Villoresi, M. Nisoli, S. De Silvestri, S. Stagira, Phys. Rev. A 79, 033842 (2009)

    Article  ADS  Google Scholar 

  24. C.P. Hauri, R.B. Lopez-Martens, C.I. Blaga, K.D. Schultz, J. Cryan, R. Chirla, P. Colosimo, G. Doumy, A.M. March, C. Roedig, E. Sistrunk, J. Tate, J. Wheeler, L.F. DiMauro, Opt. Lett. 32, 868–870 (2007)

    Article  ADS  Google Scholar 

  25. C. Zhang, J. Wang, P. Wei, L. Song, C. Li, C-J. Kim, Y. Leng, Chin. Phys. B 18, 1469–1472 (2009)

    Google Scholar 

  26. S. Adachi, P. Kumbhakar, T. Kobayashi, Opt. Lett. 29, 1150–1152 (2004)

    Article  ADS  Google Scholar 

  27. C. Zhang, P. Wei, Y. Huang, Y. Leng, Y. Zheng, Z. Zeng, R. Li, Z Xu, Opt. Lett. 34, 2730–2733 (2009)

    Article  ADS  Google Scholar 

  28. M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihira, T. Homma, H. Takahashi, Opt. Lett. 26, 1436–1438 (2001)

    Article  ADS  Google Scholar 

  29. C.G. Durfee, III, A.R. Rundquist, S. Backus, C. Herne, M.M. Murnane, H.C. Kapteyn, Phys. Rev. Lett. 83, 2187–2190 (1999)

    Article  ADS  Google Scholar 

  30. A. Rundquist, C.G. Durfee III, Z. Chang, C. Herne, S. Backus, M.M. Murnane, H.C. Kapteyn, Science 280, 1412–1415 (1998)

    Article  ADS  Google Scholar 

  31. H. Kapteyn, O. Cohen, I. Christov, M. Murnane, Science 317, 775–778 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the technical help offered by Pengfei Wei, Yansui Huang, Chuang Li, and Yinghui Zheng. This work was supported by National Basic Research Program of China (Grant No. 2006CB806000), National Natural Science Foundation (Grant Nos. 10734080, 60578049, 10523003), the State Key Laboratory Program of Chinese Ministry of Science and Technology, the Knowledge Innovation Program of Chinese Academy of Sciences and Shanghai Commission of Science and Technology under Grant No. 07JC14055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruxin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, R., Zeng, Z., Zou, P., Leng, Y., Zhang, C., Xu, Z. (2010). Toward the Generation of Isolated Attosecond Pulses in the Water Window. In: Yamanouchi, K., Gerber, G., Bandrauk, A. (eds) Progress in Ultrafast Intense Laser Science VI. Springer Series in Chemical Physics, vol 99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15054-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15054-8_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15053-1

  • Online ISBN: 978-3-642-15054-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics