Skip to main content

Di-Neutron Clustering and Deuteron-like Tensor Correlation in Nuclear Structure Focusing on 11Li

  • Chapter
  • First Online:
Clusters in Nuclei

Part of the book series: Lecture Notes in Physics ((LNP,volume 818))

Abstract

11Li is a Borromean nucleus, where two out of three objects as 9Li + n and two neutrons independently do not form bound systems. Two neutrons should form a di-neutron cluster in the nuclear field generated by the 9Li core nucleus. We treat di-neutron clustering by solving the two neutron relative wave function precisely by using the bare nucleon–nucleon interaction so that the spatial clustering structure is obtained quantitatively within the whole 11Li nucleus. This di-neutron clustering is an essential dynamics to form the halo structure by making a compact di-neutron cluster, which distributes loosely around the 9Li core. This concept of di-neutron clustering should be clearly distinguished from the BCS pairing correlation, where no consideration of spatial clustering is made. The di-neutron clustering is a new concept and is a general phenomenon in neutron skin and neutron halo nuclei. This quantitative description of di-neutron clustering has made it necessary to consider another important deuteron-like tensor correlation, which is caused by strong tensor interaction in the nucleon–nucleon interaction. The tensor interaction originates from pion exchange and known to provide large attraction to form the 4He nucleus. The unique feature of the tensor correlation is to make highly correlated deuteron-like excitation, which interferes with shell model like structure in a unique way. This dynamical effect removes the magic number effect and makes easy the participation of the s-wave neutrons. Hence, there are pairing and deuteron-like tensor correlations in addition to the mean field structure in 9Li. The combined system of two additional neutrons with the correlated 9Li provides the halo phenomenon, in which the di-neutron clustering develops with the help of large s-wave component caused by the deuteron-like tensor correlation. These two effects, the di-neutron clustering and the deuteron-like tensor correlation, are quite new and essential to provide the halo structure of 11Li. In this lecture note, we would like to introduce these two new concepts in a systematic manner and fill a gap between the halo phenomenon and the microscopic reason for this interesting phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Tanihata, et al., Phys. Lett. B206, 592 (1988)

    ADS  Google Scholar 

  2. T. Kobayashi, Nucl. Phys. A538, 343c (1992)

    ADS  Google Scholar 

  3. H. Simon, et al., Phys. Rev. Lett. 83, 496 (1999)

    ADS  Google Scholar 

  4. P.G. Hansen, B. Jonson, Europhys. Lett. 4, 409 (1987)

    ADS  Google Scholar 

  5. K. Ikeda, INS Report JHP-7(1988), in Japanese

    Google Scholar 

  6. T. Nakamura, et al., Phys. Rev. Lett. 96, 252502 (2006)

    ADS  Google Scholar 

  7. H.B. Jeppesen, et al., Phys. Lett. B642, 449 (2006), and the references therein

    Google Scholar 

  8. G.F. de Téramond, B. Gabioud, Phys. Rev. C 36, 691 (1987)

    ADS  Google Scholar 

  9. I.J. Thompson, M.V. Zhukov, Phys. Rev. C 49, 1904 (1994)

    ADS  Google Scholar 

  10. H. Esbensen, G.F. Bertsch, Nucl. Phys. A542, 310 (1992)

    ADS  Google Scholar 

  11. J. Meng, P. Ring, Phys. Rev. Lett. 77, 3963 (1996)

    ADS  Google Scholar 

  12. K. Varga, Y. Suzuki, R.G. Lovas, Phys. Rev. C 66, 041302 (2002)

    ADS  Google Scholar 

  13. B.S. Pudliner, V.R. Pandharipande, J. Carlson, S.C. Pieper, R.B. Wiringa, Phys. Rev. C 56, 1720 (1997)

    ADS  Google Scholar 

  14. I. Tanihata, et al., Phys. Rev. Lett. 55, 2676 (1985)

    ADS  Google Scholar 

  15. I. Tanihata, et al., Phys. Lett. B160, 380 (1985)

    ADS  Google Scholar 

  16. Y. Suzuki, K. Ikeda, Phys. Rev. C 38, 410 (1988)

    ADS  Google Scholar 

  17. Y. Suzuki, J.J. Wang, Phys. Rev. C 41, 736 (1990)

    ADS  Google Scholar 

  18. Y. Tosaka, Y. Suzuki, K. Ikeda, Prog. Theor. Phys. 83, 1140 (1990)

    ADS  Google Scholar 

  19. Y. Tosaka, Y. Suzuki, Nucl. Phys. A512, 46 (1990)

    ADS  Google Scholar 

  20. Y. Suzuki, Y. Tosaka, Nucl. Phys. A517, 599 (1990)

    ADS  Google Scholar 

  21. Y. Suzuki, K. Ikeda, H. Sato, Prog. Theor. Phys. 83, 180 (1990)

    ADS  Google Scholar 

  22. Y. Suzuki, Nucl. Phys. A528, 395 (1991)

    ADS  Google Scholar 

  23. K. Ikeda, Nucl. Phys. A538, 355c (1992)

    ADS  Google Scholar 

  24. S. Aoyama, S. Mukai, K. Kato, K. Ikeda, Prog. Theor. Phys. 93, 99 (1995)

    ADS  Google Scholar 

  25. T. Myo, S. Aoyama, K. Kato, K. Ikeda, Prog. Theor. Phys. 108, 133 (2002)

    ADS  Google Scholar 

  26. S. Mukai, S. Aoyama, K. Kato, K. Ikeda, Prog. Theor. Phys. 99, 381 (1998)

    ADS  Google Scholar 

  27. S. Funada, H. Kameyama, Y. Sakuragi, Nucl. Phys. A575, 93 (1994)

    ADS  Google Scholar 

  28. T. Myo, K. Kato, S. Aoyama, K. Ikeda, Phys. Rev. C 63, 054313 (2001)

    ADS  Google Scholar 

  29. T. Myo, S. Aoyama, K. Kato, K. Ikeda, Phys. Lett. B576, 281 (2003)

    ADS  Google Scholar 

  30. S. Aoyama, S. Mukai, K. Kato, K. Ikeda, Prog. Theor. Phys. 94, 343 (1995)

    ADS  Google Scholar 

  31. K. Kato, S. Aoyama, S. Mukai, K. Ikeda, Nucl. Phys. A588, 29c (1995)

    ADS  Google Scholar 

  32. S. Aoyama, K. Kato, K. Ikeda, Phys. Rev. C 55, 2379 (1997)

    ADS  Google Scholar 

  33. S. Aoyama, K. Kato, K. Ikeda, Phys. Lett. B414, 13 (1997)

    ADS  Google Scholar 

  34. S. Aoyama, K. Kato, K. Ikeda, Prog. Theor. Phys. 99, 623 (1998)

    ADS  Google Scholar 

  35. S. Aoyama, Phys. Rev. C 59, 531 (1999)

    ADS  Google Scholar 

  36. S. Aoyama, K. Kato, K. Ikeda, Prog. Theor. Phys. Suppl. 142, 35 (2001)

    ADS  Google Scholar 

  37. S. Aoyama, K. Kato, T. Myo, K. Ikeda, Prog. Theor. Phys. 107, 543 (2002)

    ADS  Google Scholar 

  38. K. Hagino, H. Sagawa, Phys. Rev. C 72, 044321 (2005)

    ADS  Google Scholar 

  39. M. Matsuo, K. Mizuyama, Y. Serizawa, Phys. Rev. C 71, 064326 (2005)

    ADS  Google Scholar 

  40. B.Y. Sun, H. Toki, J. Meng, Phys. Lett. B683, 134 (2010)

    ADS  Google Scholar 

  41. M. Kamimura, Phys. Rev. A 38, 621 (1988)

    ADS  Google Scholar 

  42. H. Kameyama, M. Kamimura, Y. Fukushima, Phys. Rev. C 40, 974 (1989)

    ADS  Google Scholar 

  43. S. Saito, Prog. Theor. Phys. Suppl. 62, 11 (1977)

    ADS  Google Scholar 

  44. T. Yamada, K. Ikeda, H. Bando, T. Motoba, Phys. Lett. B172, 149 (1986)

    ADS  Google Scholar 

  45. T. Yamada, K. Ikeda, H. Bando, T. Motoba, Phys. Rev. C 38, 854 (1988)

    ADS  Google Scholar 

  46. S. Aoyama, T. Myo, K. Kato, K. Ikeda, Prog. Theor. Phys. 116, 1 (2006)

    ADS  Google Scholar 

  47. H. Horiuchi, Prog. Theor. Phys. Suppl. 62, 90 (1977)

    ADS  Google Scholar 

  48. E. Hiyama, Y. Kino, M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003)

    ADS  Google Scholar 

  49. H. Masui, K. Kato, K. Ikeda, Phys. Rev. C 73, 034318 (2006)

    ADS  Google Scholar 

  50. T. Myo, K. Kato, K. Ikeda, Phys. Rev. C 76, 054309 (2007)

    ADS  Google Scholar 

  51. H. Kanada, T. Kaneko, S. Nagata, M. Nomoto, Prog. Theor. Phys. 61, 1327 (1979)

    ADS  Google Scholar 

  52. Y.C. Tang, M. LeMere, D.R. Thompson, Phys. Rep. 47, 167 (1978)

    ADS  Google Scholar 

  53. K. Kato, T. Yamada, K. Ikeda, Prog. Theor. Phys. 101, 119 (1999)

    ADS  Google Scholar 

  54. Y, Kikuchi, T. Myo, M. Takashina, K. Kato, K. Ikeda, Prog. Theor. Phys. 122, 499 (2009)

    ADS  MATH  Google Scholar 

  55. P. Mueller, et al., Phys. Rev. Lett. 99, 252501 (2007)

    ADS  Google Scholar 

  56. M.V. Zhukov, B.V. Danilin, D.V. Fedorov, J.M. Bang, I.J. Thompson, J.S. Vaagen, Phys. Rep. 231, 151 (1993)

    ADS  Google Scholar 

  57. E. Nielsen, D.V. Fedorov, A.S. Jensen, E. Garrido, Phys. Rep. 347, 373 (2001)

    MathSciNet  ADS  MATH  Google Scholar 

  58. K. Kato, K. Ikeda, Prog. Theor. Phys. 89, 623 (1993)

    ADS  Google Scholar 

  59. H. Furutani, H. Kanada, T. Kaneko, Si. Nagata, H. Nishioka, S. Okabe, S. Saito, T. Sakuda, M. Seya, Prog. Theor. Phys. Suppl. 68, 193 (1980)

    ADS  Google Scholar 

  60. V.I. Kukulin, V.M. Krasnopol’sky, V.T. Voronchev, P.B. Sazonov, Nucl. Phys. A453, 365 (1986)

    ADS  Google Scholar 

  61. J.A. Tostevin, J.S. Al-Khalili, Nucl. Phys. A616, 418c (1997)

    ADS  Google Scholar 

  62. T. Myo, Y. Kikuchi, K. Kato, H. Toki, K. Ikeda, Prog. Theor. Phys. 119, 561 (2008)

    ADS  Google Scholar 

  63. J. Aguilar, J.M. Combes, Commun. Math. Phys. 22, 269 (1971)

    MathSciNet  ADS  MATH  Google Scholar 

  64. E. Balslev, J.M. Combes, Commun. Math. Phys. 22, 280 (1971)

    MathSciNet  ADS  MATH  Google Scholar 

  65. T. Myo, A. Ohnishi, K. Kato, Prog. Theor. Phys. 99, 801 (1998)

    ADS  Google Scholar 

  66. A.T. Kruppa, R. Suzuki, K. Kato, Phys. Rev. C 75, 044602 (2007)

    ADS  Google Scholar 

  67. R. Suzuki, A.T. Kruppa, B.G. Giraud, K. Kato, Prog. Theor. Phys. 119, 949 (2008)

    ADS  MATH  Google Scholar 

  68. R. Suzuki, T. Myo, K. Kato, Prog. Theor. Phys. 113, 1273 (2005)

    ADS  Google Scholar 

  69. T. Berggren, Nucl. Phys. A109, 265 (1968)

    ADS  Google Scholar 

  70. N. Moiseyev, P.R. Certain, F. Weinhold, Mole. Phys. 36, 1613 (1978)

    MathSciNet  ADS  Google Scholar 

  71. A. Csótó, Phys. Rev. C 48, 165 (1993)

    ADS  Google Scholar 

  72. K. Arai, Y. Suzuki, R.G. Lovas, Phys. Rev. C 59, 1432 (1999)

    ADS  Google Scholar 

  73. F. Ajzenberg-Selove, Nucl. Phys. A506, 1 (1989)

    ADS  Google Scholar 

  74. J. Jänecke, et al., Phys. Rev. C 54, 1070 (1996)

    ADS  Google Scholar 

  75. T. Aumann, et al., Phys. Rev. C 59, 1252 (1999)

    ADS  Google Scholar 

  76. S.C. Pieper, R.B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53 (2001)

    ADS  Google Scholar 

  77. S.C. Pieper, K. Varga, R.B. Wiringa, Phys. Rev. C 66, 044310 (2002)

    ADS  Google Scholar 

  78. T. Myo, S. Sugimoto, K. Kato, H. Toki, K. Ikeda, Prog. Theor. Phys. 117, 257 (2007)

    ADS  Google Scholar 

  79. T. Myo, K. Kato, H. Toki, K. Ikeda, Phys. Rev. C 76, 024305 (2007)

    ADS  Google Scholar 

  80. S. Sugimoto, K. Ikeda, H. Toki, Nucl. Phys. A740, 77 (2004)

    ADS  Google Scholar 

  81. Y. Ogawa, H. Toki, S. Tamenaga, S. Sugimoto, K. Ikeda, Phys. Rev. C 73, 034301 (2006)

    ADS  Google Scholar 

  82. H. Feldmeier, T. Neff, R. Roth, J. Schnack, Nucl. Phys. A632, 61 (1998)

    ADS  Google Scholar 

  83. T. Neff, H. Feldmeier, Nucl. Phys. A713, 311 (2003)

    ADS  MATH  Google Scholar 

  84. T. Myo, H. Toki, K. Ikeda, Prog. Theor. Phys. 121, 511 (2009)

    ADS  Google Scholar 

  85. T. Otsuka, Y. Utsuno, M. Honma, T. Mizusaki, Prog. Part. Nucl. Phys. 46, 155 (2003)

    ADS  Google Scholar 

  86. D.H. Gloeckner, R.D. Lawson: Phys. Lett. B53, 313 (1974)

    ADS  Google Scholar 

  87. R. Roth, P. Papakonstantinou, N. Paar, H. Hergert, T. Neff, H. Feldmeier, Phys. Rev. C 73, 044312 (2006)

    ADS  Google Scholar 

  88. H. Kamada, et al., Phys. Rev. C 64, 044001 (2001)

    ADS  Google Scholar 

  89. P. Descouvemont, Nucl. Phys. A626, 647 (1997)

    ADS  Google Scholar 

  90. D. Baye, Nucl. Phys. A627, 305 (1997)

    ADS  Google Scholar 

  91. N. Vinh Mau, J.C. Pacheco, Nucl. Phys. A607, 163 (1996)

    ADS  Google Scholar 

  92. E. Garrido, D.V. Fedorov, A.S. Jensen, Nucl. Phys. A700, 117 (2002)

    ADS  Google Scholar 

  93. E. Garrido, D.V. Fedorov, A.S. Jensen, Nucl. Phys. A708, 277 (2002)

    ADS  Google Scholar 

  94. G. Blanchon, A. Bonaccorso, D.M. Brink, N. Vinh Mau, Nucl. Phys. A791, 303 (2007)

    ADS  Google Scholar 

  95. M. Thoennessen, et al., Phys. Rev. C 59, 111 (1999)

    ADS  Google Scholar 

  96. M. Chartier, et al., Phys. Lett. B510, 24 (2001)

    ADS  Google Scholar 

  97. Y. Akaishi, Int. Rev. Nucl. Phys. 4, 259 (1986)

    Google Scholar 

  98. T. Terasawa, Prog. Theor. Phys. 23, 87 (1960)

    MathSciNet  ADS  MATH  Google Scholar 

  99. A. Arima, T. Terasawa, Prog. Theor. Phys. 23, 115 (1960)

    MathSciNet  ADS  MATH  Google Scholar 

  100. S. Nagata, T. Sasakawa, T. Sawada, R. Tamagaki, Prog. Theor. Phys. 22, 274 (1959)

    ADS  Google Scholar 

  101. T. Myo, K. Kato, K. Ikeda, Prog. Theor. Phys. 113, 763 (2005)

    ADS  Google Scholar 

  102. H. Sagawa, B.A. Brown, H. Esbensen, Phys. Lett. B309, 1 (1993)

    ADS  Google Scholar 

  103. S.C. Pieper, R.B. Wiringa, J. Carlson, Phys. Rev. C 70, 054325 (2004)

    ADS  Google Scholar 

  104. A. Hasegawa, S. Nagata, Prog. Theor. Phys. 45, 1786 (1971)

    ADS  Google Scholar 

  105. H. Toki, S. Sugimoto, K. Ikeda, Prog. Theor. Phys. 108, 903 (2002)

    ADS  MATH  Google Scholar 

  106. Y. Akaishi, Nucl. Phys. A738, 80 (2004)

    ADS  Google Scholar 

  107. K. Ikeda, S. Sugimoto, H. Toki, Nucl. Phys. A738, 73 (2004)

    ADS  Google Scholar 

  108. H. G. Bohlen, et al., Z. Phys. A344, 381 (1993)

    ADS  Google Scholar 

  109. A.V. Dobrovolsky, et al., Nucl. Phys. A766, 1 (2006)

    ADS  Google Scholar 

  110. R. Sánchez, et al., Phys. Rev. Lett. 96, 033002 (2006)

    ADS  Google Scholar 

  111. M. Puchalski, A.M. Moro, K. Pachucki, Phys. Rev. Lett. 97, 133001 (2006)

    ADS  Google Scholar 

  112. E. Arnold, et al., Z. Phys. A349, 337 (1994)

    ADS  Google Scholar 

  113. Y. Kanada-En’yo, H. Horiuchi, A. Ono, Phys. Rev. C 52, 628 (1995)

    ADS  Google Scholar 

  114. D. Borremans, et al., Phys. Rev. C 72, 044309 (2005)

    ADS  Google Scholar 

  115. T. Suzuki, R. Fujimoto, T. Otsuka, Phys. Rev. C 67, 044302 (2003)

    ADS  Google Scholar 

  116. C. Bachelet, Eur. Phys. J. A25, 31 (2005)

    Google Scholar 

  117. C. Bachelet, Phys. Rev. Lett. 100, 182501 (2008)

    ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to all the collaborators for fruitful collaborations and continuous discussions. We would like to thank Prof. Hisashi Horiuchi for continuous support and encouragement. This work is supported by the JSPS grant: No. 18540269, 21540267 and 21740194.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyomi Ikeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ikeda, K., Myo, T., Kato, K., Toki, H. (2010). Di-Neutron Clustering and Deuteron-like Tensor Correlation in Nuclear Structure Focusing on 11Li. In: Beck, C. (eds) Clusters in Nuclei. Lecture Notes in Physics, vol 818. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13899-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13899-7_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13898-0

  • Online ISBN: 978-3-642-13899-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics