Skip to main content

Radiative Transfer in the Coupled Atmosphere-Snow-Ice-Ocean (CASIO) System: Review of Modeling Capabilities

  • Chapter
UV Radiation in Global Climate Change

Abstract

A review is provided of ultraviolet (UV) and visible radiative transfer in an atmosphere-sea-ice-ocean system with emphasis on the basic physical principles involved rather than on mathematical/numerical techniques. To illustrate the application of the theory, a few examples are provided. First, we provide a comparison of two different models for radiation penetration into the open ocean, which for a given set of input parameters give identical results. Thus, for a stratified atmosphere-ocean system, our ability to model the transfer of UV radiation and visible light appears to be limited as much by reliable information about the inherent optical properties of marine constituents as by our ability to accurately solve the radiative transfer equation. Second, we discuss a comparison between measured and modeled radiative transfer results in an atmosphere-sea ice-ocean system, which reveals that accurate transmittances as well as accurate values for the radiative energy deposition versus depth can be calculated. Third, we review results of a study showing that multiple scattering in a highly scattering medium such as sea ice gives rise to a marked enhancement of the downward irradiance across the atmosphere-sea ice interface. Finally, we review a recent study in which the modeled radiation field is used to illustrate how the primary production in icy polar waters might be influenced by an ozone depletion. Contrary to previous investigations, this study reveals that a 50% ozone depletion might lead to an increase (∼1%) rather than a decrease in primary productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson GP, Clough SA, Kneizys FX, Chetwynd JH, and Shettle EP (1987) AFGL Atmospheric Constituent Profiles (0–120) km, AFGL-TR-86-0110, AFGL (OPI), Hanscom AFB, MA

    Google Scholar 

  • Anderson JG, Toohey DW, and Brune WH (1991) Free radicals within the Antarctic vortex: The role of CFCs in Antarctic ozone loss. Science 251: 39–46

    Article  CAS  Google Scholar 

  • Calkins J, and Thordardottir C (1980) The ecological significance of solar UV radiation on aquatic organisms. Nature 283: 563–566

    Article  Google Scholar 

  • Collins DG, Blattner WG, Wells MB, and Horak HG (1972) Backwards Monte Carlo calculations of the polarization characteristics of the radiation field emerging from spherical shell atmospheres. Appl. Opt. 11: 2684–2705

    Article  CAS  Google Scholar 

  • Cox GF, and Weeks WF (1983) Equations for determining the gas and brine volumes in sea-ice samples. J. Glaciol. 29: 306–316

    Google Scholar 

  • Cullen JL, Neale PJ, and Lesser MP (1992) Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science 258: 646–650

    Article  CAS  Google Scholar 

  • Cullen JL, and Neale PJ (1994) Ultraviolet radiation, ozone depletion, and marine photosynthesis. Photosyn. Res. 39: 303–320

    Article  CAS  Google Scholar 

  • Deal CJ, Kieber DJ, Toole DA, Stamnes K, Jiang S, and Uzuka N (2005) Dimethylsulfide photolysis rates and apparent quantum yields in Bering Sea seawater. Continental Shelf Research 25: 1825–1835

    Article  Google Scholar 

  • Döhler G (1985) Effect of UV-B radiation (290-320 nm) on the nitrogen metabolism of several marine diatoms. J. Plant Physiol. 118: 391–400

    Google Scholar 

  • Döhler G, and Hagmeier E (1997) UV effects on pigments and assimilation of 15N-ammonium and 15N-nitrate by natural marine phytoplankton of the North Sea. Bot. Acta 110: 481–488

    Google Scholar 

  • Gerland S, Winther J-G, Ørbæk JB, and Ivanov BV (1999) Physical properties, spectral reflectance and thickness development of first year fast ice in Kongsfjorden, Svalbard. Polar Res. 18: 275–282

    Article  Google Scholar 

  • Gjerstad KI, Stamnes JJ, Hamre B, Lotsberg JK, Yan B, and Stamnes K (2003) Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system. Appl. Opt. 42: 2609–2622

    Article  Google Scholar 

  • Goes JI, Handa N, Taguchi S, Hama T, and Saito H (1995) Impact of natural ultraviolet radiation on production patterns and composition of dissolved free and combined amino acids in marine phytoplankton. J. Plankton Res. 17: 1337–1362

    Article  CAS  Google Scholar 

  • Gordon HR (1997) Atmospheric correction of ocean color imagery in the Earth Observing System era. J. Geophys. Res. 102: 17,081–17,106

    Article  Google Scholar 

  • Häder DP (ed) (1997) The effect of ozone depletion on aquatic ecosystems. R.G. Landes Company, Academic Press, Austin

    Google Scholar 

  • Häder DP, Kumar HD, Smith RC, and Worrest RC (1998) Effects on aquatic ecosystems. J. Photochem. Photobiol. B: Biology 46: 53–68

    Article  Google Scholar 

  • Hamre B, Winther J-G, Gerland S, Stamnes JJ, and Stamnes K (2004) Modeled and measured optical transmittance of snow covered first-year sea ice in Kongsfjorden, Svalbard. J. Geophys. Res. 109:DOI:10.1029/2003JC001926

    Google Scholar 

  • Hamre B, Stamnes JJ, Frette Ø, Erga SR, and Stamnes K (2008) Could stratospheric ozone depletion lead to enhanced aquatic primary production in the polar regions? Limnol. Oceanogr. 53: 332–338

    CAS  Google Scholar 

  • Herman JR, Barthia PK, Ahmad Z, and Larko D (1996) UV-B radiation increases (1979–1992) from decreases in total ozone. Geophys. Res. Lett. 23: 2117–2120

    Article  CAS  Google Scholar 

  • Herman JR, McKenzie RL, Diaz SB, Kerr JB, Madronich S, and Seckemeyer G (1999) Ultraviolet radiation at the earth’s surface. In: Scientific Assessment of Ozone Depletion: 1998 WMO Rep. 44, World Meteorol. Org., Global Ozone Res. Monit. Proj., Geneva, Switzerland, pp 9.1–9.46

    Google Scholar 

  • Holm-Hansen O, Lubin D, and Helbling EW (1993a) Ultraviolet radiation and its effects on organisms in aquatic environments. In: Young AR, Björn LO, Moan J, Nultsch W (eds) Environmental UV Photobiology, Plenum Press, New York

    Google Scholar 

  • Holm-Hansen O, Helbling EW, and Lubin D (1993b) Ultraviolet radiation in Antarctica: Inhibition of primary production. Photochem. Photobiol. 58: 567–570

    Article  CAS  Google Scholar 

  • Jiang S, Stamnes K, Li W, and Hamre B (2005) Enhanced Solar Irradiance Across the Atmosphere-Sea Ice Interface: A Quantitative Numerical Study. Appl. Opt. 44: 2613–2625

    Article  Google Scholar 

  • Jin Z, and Stamnes K (1994) Radiative transfer in nonuniformly refracting media such as the atmosphere/ocean system. Appl. Opt. 33: 431–442

    Article  Google Scholar 

  • Jin Z, Stamnes K, Weeks WF, and Tsay SC (1994) The effect of sea ice on the solar energy budget in the atmosphere-sea ice-ocean system: A model study. J. Geophys. Res. 99: 25281–25294

    Article  Google Scholar 

  • Jin Z, Charlock TP, Rutledge K, Stamnes K, Wang Y (2006) An analytical solution of radiative transfer in the coupled atmosphere-ocean system with rough surface. Appl. Opt. 45: 7443–7455

    Article  Google Scholar 

  • Jokiel PL, and York RH (1984) Importance of ultraviolet radiation in photoinhibition of microalgae growth. Limnol. Oceanogr. 29: 192–199

    Article  Google Scholar 

  • Karentz D, Cleaver JE, and Mitchell DL (1991) Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation. J. Phycol. 27: 326–341

    Article  CAS  Google Scholar 

  • Karentz D, McIntyre S, Matlick HA, Menzies D, Ondrusek M, Wan Z, and Waters KJ (1992) Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255: 952–959

    Article  Google Scholar 

  • Legendre L, Ackley SF, Dieckmann GS, Gullicksen B, Horner R, Hoshiai T, Melnikov IA, Reeburgh WS, Spindler M, and Sullivan CW (1992) Ecology of sea biota: 2. Global significance. Polar Biol. 12: 429–444

    Google Scholar 

  • Lenoble J (ed) (1985) Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures. A. Deepak, Hampton, VA

    Google Scholar 

  • Li W, Stamnes K, Spurr R, and Stamnes JJ (2008) Simultaneous retrieval of aerosols and ocean properties: A classic inverse modeling approach. II. SeaWiFS Case Study for the Santa Barbara Channel. Int. J. Rem. Sens. DOI: 10.1080/01431160802007632, 29, 5689–5698

    Article  Google Scholar 

  • Lobman M, Döhler G, Huckenbeck N, and Verdini S (1998) Effects of UV radiation of different wavebands on pigmentation, 15N-ammonium uptake, amino acid pools and adenylate contents of marine diatoms. Mar. Biol. 130: 501–507

    Article  Google Scholar 

  • Mobley CD (1994) Light and water: radiative transfer in natural waters. Academic Press, San Diego, CA

    Google Scholar 

  • Mobley CD, Gentili B, Gordon HR, Jin Z, Kattawar GW, Morel A, Reinersmann P, Stamnes K, and Stavn RH (1993) Comparison of numerical models for computing underwater light fields. Appl. Opt. 32: 7484–7504

    Article  Google Scholar 

  • Morel A (1974) Optical properties of pure sea water. In: Jerlov NG, Nielsen ES (eds) Optical Aspects of Oceanography, Academic Press, pp.1–24

    Google Scholar 

  • Morel A (1991) Light and marine photosynthesis: A model with geochemical and climatological implications. Prog. Oceanogr. 26: 263–306

    Article  Google Scholar 

  • Morel A, and Gentili B (1991) Diffuse reflectance of oceanic waters: Its dependence on sun angle as influenced by the molecular scattering contribution. Appl. Opt. 30: 4427–4438

    Article  CAS  Google Scholar 

  • Morel A, and Maritorena S (2001) Bio-optical properties of oceanic waters: A reappraisal, J. Geophys. Res. 106: 7163–7180

    Article  Google Scholar 

  • Neale PJ, Cullen JL, Lesser MP, and Melis A (1993) Physiological bases for detecting and predicting photoinhibition of aquatic photosynthesis by PAR and UV radiation. In: Yamamoto H (ed) Photosynthetic response to the environment. American Society of Plant Physiology, Rockville, pp.61–77

    Google Scholar 

  • Neale PJ, Cullen JJ, and Davis RF (1998) Inhibition of marine photosynthesis by ultraviolet radiation: Variable sensitivity of phytoplankton in the Weddell-Scotia Confluence during the austral spring, Limnol. Oceanogr. 43: 433–448

    CAS  Google Scholar 

  • Pegau WS, Cleveland JS, Doss W, Kennedy CD, Maffione RA, Mueller JL, Trees CC, Weidemann AD, Wells WH, and Zaneveld JRV (1995) A comparison of methods for the measurement of the absorption coefficient in natural waters. J. Geophys. Res. 100: 13,201–13,220

    Article  Google Scholar 

  • Perovich DK, and Maykut GA (1996) Solar heating of a stratified ocean in the presence of a static ice cover. J. Geophys. Res. 95: 18,233–18,245

    Article  Google Scholar 

  • Pope RM, and Fry ES (1997) Absorption spectrum (380-700 nm) of pure water, II, Integrating cavity measurements. Appl. Opt. 36(33): 8710–8723

    Article  CAS  Google Scholar 

  • Prézelin BB, Boucher NP, and Smith RC (1994) Marine primary production under the Antarctic ozone hole. In: Weiler S, Penhale P (eds) Ultraviolet Radiation and Biological Research in Antarctica, Antarctic Research Series 62: 159–186

    Google Scholar 

  • Rottman GJ, Woods TN, and Sparn TP (1993) Solar stellar irradiance comparison experiment I. Instrument design and operation. J. Geophys. Res. 98: 10,667–10,678

    Article  Google Scholar 

  • Slaper H, Velders GJM, Daniel JS, de Gruijl FR, and van der Leun JC (1995) Estimates of ozone depletion and skin cancer to examine the Vienna Convention achievements. Nature 384: 256–259

    Article  Google Scholar 

  • Smith RC, and Baker KS (1989) Stratospheric ozone, middle ultraviolet radiation and phytoplankton productivity. Oceanogr. Mag. 2: 4–10

    Google Scholar 

  • Smith RC, Prezelin BB, Baker KS, Bidigare RR, Boucher NP, Coley, T, Karentz D, Maclntyre S, Matlick HA, Menzies D, Ondrusek M, Wan Z and Waters KJ (1992) Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255: 952–957

    Article  CAS  Google Scholar 

  • Solomon S (1990) Progress towards a quantitative understanding of Antarctic ozone depletion. Nature 347: 347–354

    Article  CAS  Google Scholar 

  • Stamnes K, Tsay S-C, Wiscombe WJ, and Jayaweera K (1988) Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 27: 2502–2509

    Article  CAS  Google Scholar 

  • Stamnes K, Tsay S-C, Wiscombe WJ, and Laszlo I (2000) DISORT, A General-Purpose Fortran Program for Discrete-Ordinate-Method Radiative Transfer in Scattering and Emitting Layered Media: Documentation of Methodology, Report. ftp://climate1.gsfc.nasa.gov/wiscombe/

    Google Scholar 

  • Stamnes K, Li W, Yan B, Eide H, Barnard A, Pegau WS, and Stamnes J (2003) Accurate and self-consistent ocean color algorithm: simultaneous retrieval of aerosol optical properties and chlorophyll concentrations. Appl. Opt. 42: 939–951

    Article  CAS  Google Scholar 

  • Thomas GE, and Stamnes K (1999) Radiative Transfer in the Atmosphere and Ocean. Cambridge University Press

    Google Scholar 

  • Vasilkov A, Krotkov N, Herman J, McClain, K, Arrigo C, and Robinson W (2001) Global mapping of underwater UV irradiances and DNA-weighted exposures using Total Ozone Mapping Spectrometer and Sea-viewing Wide Field-of-view Sensor data products. J. Geophys Res. 106: 27202–27219

    Article  Google Scholar 

  • Wängberg S-Aa, Garde K, Gustavson K, and Selmer J (1999) Effects of UV-B radiation on marine phytoplankton communities. J. Plankton Res. 21: 147–166

    Article  Google Scholar 

  • Wheeler PA, Gosselin M, Sherr EE, Thibault D, Kirchman DL, Benner R, and Whitledge TE (1996) Active cycling of organic carbon in the central Arctic Ocean. Nature 380: 697–699

    Article  CAS  Google Scholar 

  • Worrest RC (1986) The effect of solar UV-B radiation on aquatic systems: An overview. In: Titus JG (ed) Effects of Changes in Stratospheric Ozone and Global Climate, Overview. U.S. Environmental Protection Agency and United Nations Environmental Program 1, pp.175–191

    Google Scholar 

  • Zeebe RE, Eicken H, Robinson DH, and Wolf-Gladrow D (1996) Modeling the heating of melting sea ice though light absorption by microalgae. J. Geophys. Res. 101: 1163–1181

    Article  Google Scholar 

  • Zeng J, Jin Z, and Stamnes K (1993) Impact of stratospheric ozone depletion on UV penetration into the ocean at high latitudes. In: Underwater Light Measurements. Proc. SPIE 2048: 56–63

    Google Scholar 

  • Zerefos CS, and Bais AF (eds) (1997) Solar Ultraviolet Radiation: Modeling, Measurements and Effects. Springer-Verlag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stamnes, K., Hamre, B., Stamnes, J.J. (2010). Radiative Transfer in the Coupled Atmosphere-Snow-Ice-Ocean (CASIO) System: Review of Modeling Capabilities. In: Gao, W., Slusser, J.R., Schmoldt, D.L. (eds) UV Radiation in Global Climate Change. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03313-1_9

Download citation

Publish with us

Policies and ethics