Skip to main content

Brain Lesion Segmentation through Physical Model Estimation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5358))

Abstract

Segmentations of brain lesions from Magnetic Resonance (MR) images is crucial for quantitative analysis of lesion populations in neuroimaging of neurological disorders. We propose a new method for segmenting lesions in brain MRI by inferring the underlying physical models for pathology. We use the reaction-diffusion model as our physical model, where the diffusion process is guided by real diffusion tensor fields that are obtained from Diffusion Tensor Imaging (DTI). The method performs segmentation by solving the inverse problem, where it determines the optimal parameters for the physical model that generates the observed image. We show that the proposed method can infer reasonable models for multiple sclerosis (MS) lesions and healthy MRI data. The method has potential for further extensions with different physical models or even non-physical models based on existing segmentation schemes.

This work is part of the National Alliance for Medical Image Computing (NA-MIC), funded by the National Institutes of Health through Grant U54 EB005149. Information on the National Centers for Biomedical Computing can be obtained from http://www.nihroadmap.nih.gov /bioinformatics

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakshi, R., Caruthersa, S.D., Janardhana, V., Wasay, M.: Intraventricular csf pulsation artifact on fast fluid-attenuated inversion-recovery MR images: Analysis of 100 consecutive normal studies. AJNR 21, 503–508 (2000)

    Google Scholar 

  2. Zijdenbos, A., Forghani, R., Evans, A.: Automatic quantification of MS lesions in 3D MRI brain data sets: Validation of INSECT. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 439–448. Springer, Heidelberg (1998)

    Google Scholar 

  3. Thirion, J.P., Calmon, G.: Deformation analysis to detect and quantify active lesions in three-dimensional medical image sequences. IEEE TMI 18, 429–441 (1999)

    Google Scholar 

  4. Rey, D., Subsol, G., Delingette, H., Ayache, N.: Automatic detection and segmentation of evolving processes in 3D medical images: Application to multiple sclerosis. Medical Image Analysis 6, 163–179 (2002)

    Article  Google Scholar 

  5. van Leemput, K., Maes, F., Vandermeulen, D., Colchester, A., Suetens, P.: Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE TMI 20, 677–688 (2001)

    Google Scholar 

  6. Mohamed, A., Zacharaki, E.I., Shen, D., Davatzikos, C.: Deformable registration of brain tumor images via a statistical model of tumor-induced deformation. MedI.A 10 (2006)

    Google Scholar 

  7. Clatz, O., Sermesant, M., Bondiau, P.Y., Delingette, H., Warfield, S.K., Malandain, G., Ayache, N.: Realistic simulation of the 3d growth of brain tumors in mr images including diffusion and mass effect. IEEE Transactions on Medical Imaging 24, 1344–1346 (2005)

    Article  Google Scholar 

  8. Cocosco, C.A., Kollokian, V., Kwan, R.S., Evans, A.C.: BrainWeb: Online interface to a 3D MRI simulated brain database. Neuroimage 5 (1997)

    Google Scholar 

  9. Goodlett, C., Davis, B., Jean, R., Gilmore, J., Gerig, G.: Improved correspondence for dti population studies via unbiased atlas building. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 260–267. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16, 187–198 (1997)

    Article  Google Scholar 

  11. Hughes, T.J.R.: The finite element method: linear static and dynamic finite element analysis. Dover (2000)

    Google Scholar 

  12. Lee, H.C., Cok, D.R.: Detecting boundaries in a vector field. IEEE Trans. Signal Processing 39, 1181–1194 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prastawa, M., Gerig, G. (2008). Brain Lesion Segmentation through Physical Model Estimation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2008. Lecture Notes in Computer Science, vol 5358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89639-5_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89639-5_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89638-8

  • Online ISBN: 978-3-540-89639-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics