Skip to main content

Why Is Scale an Effective Descriptor for Data Quality? The Physical and Ontological Rationale for Imprecision and Level of Detail

  • Chapter
  • First Online:
Research Trends in Geographic Information Science

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

Observations and processing of data create data and their quality. Quantitative descriptors of data quality must be justified by the properties of the observation process. In this contribution two unavoidable sources of imperfections imperfection in the observation of physical properties are identified and their influences on data collections analyzed. These are, firstly, the random noise disturbing precise measurements; secondly, finiteness of observations—only a finite number of observations is possible and each of it averages properties over an extended area.

These two unavoidable imperfections of the data collection process determine data quality. Rational data quality measures must be derived from them: Precision is the effect of noise in the measurement. The finiteness of observations leads to a novel formalized and quantifiable approach to level of detail.

The customary description of a geographic data set by ‘scale’ seems to relate these two sources of imperfection in a single characteristic; the theory described here justifies this approach for static representation of geographic space and shows how to extend it for spatio-temporal data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abler R (1987) Review of the Federal Research Agenda. In: International Geographic Information Systems (IGIS) Symposium (IGIS'87), The Research Agenda, Arlington, VA

    Google Scholar 

  • Cardelli L (1997) Type Systems. In: Tucker AB (ed) Handbook of Computer Science and Engineering, CRC Press, pp 2208–2236

    Google Scholar 

  • Chrisman N (1987) Fundamental Principles of Geographic Information Systems. In: Auto-Carto 8, Baltimore, MA, ASPRS & ACSM

    Google Scholar 

  • Couclelis H (1992) People Manipulate Objects (but Cultivate Fields): Beyond the Raster-Vector Debate in GIS. In: Frank AU, Campari I, Formentini U (eds) Theories and Methods of Spatio-Temporal Reasoning in Geographic Space, Springer, Berlin Heidelberg New York, LNCS 639, pp 65–77

    Google Scholar 

  • Egenhofer MJ, Frank AU (1986) Connection between Local and Regional: Additional “Intelligence” Needed. In: FIG XVIII International Congress of Surveyors, Toronto, Canada (June 1-11, 1986)

    Google Scholar 

  • Frank AU (2006) Distinctions Produce a Taxonomic Lattice: Are These the Units of Mentalese? In: International Conference on Formal Ontology in Information Systems (FOIS), Baltimore, Maryland, IOS Press

    Google Scholar 

  • Frank AU (2001) Tiers of Ontology and Consistency Constraints in Geographic Information Systems. International Journal of Geographical Information Science (IJGIS) 75(5 (Special Issue on Ontology of Geographic Information)): 667–678

    Google Scholar 

  • Frank AU (2003) Ontology for Spatio-Temporal Databases. In: Koubarakis M, Sellis T, Frank AU, Grumbach S, Güting RH, Jensen CS, Lorentzos N, Manolopoulos Y, Nardelli E, Pernici B, Schek H-J, Scholl M, Theodoulidis B, Tryfona N (eds) Spatiotemporal Databases: The Chorochronos Approach, Springer, Berlin Heidelberg New York, pp 9–78

    Google Scholar 

  • Frank AU (2007) Data Quality Ontology: An Ontology for Imperfect Knowledge. In: Winter S, Duckham D, Kulik L, Kuipers B (eds) Spatial Information Theory, 8th International Conference, COSIT 2007, Melbourne, Australia, September 19-23, 2007, Proceedings, Lecture Notes in Computer Science 4736, Springer, Berlin Heidelberg New York, pp 406–420

    Google Scholar 

  • Frank AU (2008a) Analysis of Dependence of Decision Quality on Data Quality. Journal of Geographical Systems 10(1): 71–88

    Article  Google Scholar 

  • Frank AU (2008b) Data Quality - What Can an Ontological Analysis Contribute? In: Spatial Accuracy Assessment in Natural Resources and Environmental Sciences 2008, Shanghai, China, WorldAcademicPress

    Google Scholar 

  • Frank AU (draft 2005) Ontology for GIS. Vienna, Technical University Vienna, Institute for Geoinformation and Cartography

    Google Scholar 

  • Gabora L, Rosch E, Aerts E (2008) Toward an Ecological Theory of Concepts. Ecological Psychology 20(1): 84–116

    Article  Google Scholar 

  • Gibson JJ (1986) The Ecological Approach to Visual Perception, Hillsdale, NJ, Lawrence Erlbaum

    Google Scholar 

  • Goodchild MF, Egenhofer MJ, Kemp KK, Mark DM, Sheppard E (1999) Introduction to the Varenius Project. International Journal of Geographical Information Science (IJGIS) 13(8): 731–745

    Article  Google Scholar 

  • Goodchild MF, Proctor J (1997) Scale in a Digital Geographic World. Geographical & Environmental Modelling 1(1): 5–23

    Google Scholar 

  • Grenon P, Smith B, Goldberg L (2004) Biodynamic Ontology: Applying BFO in the Biomedical Domain. In: Pisanelli DM (ed) Ontologies in Medicine, IOS Press, Amsterdam, pp 20–38.

    Google Scholar 

  • Gruber, T. (2005). “TagOntology - a way to agree on the semantics of tagging data.” Retrieved October 29, 2005., from http://tomgruber.org/writing/tagontology-tagcapm-talk.pdf.

  • Guarino, N. (1995). “Formal Ontology, Conceptual Analysis and Knowledge Representation.” International Journal of Human and Computer Studies. Special Issue on Formal Ontology, Conceptual Analysis and Knowledge Representation, edited by N. Guarino and R. Poli 43(5/6).

    Google Scholar 

  • Heidegger, M. (1927; reprint 1993). Sein und Zeit. Tübingen, Niemeyer.

    Google Scholar 

  • Horn, B. K. P. (1986). Robot Vision. Cambridge, Mass, MIT Press.

    Google Scholar 

  • Husserl (1900/01). Logische Untersuchungen. Halle, M. Niemeyer.

    Google Scholar 

  • Krantz DH, Luce RD, Suppes P, Tversky A (1971) Foundations of Measurement. New York, Academic Press

    Google Scholar 

  • Kuhn W (2007) An Image-Schematic Account of Spatial Categories. In: Winter S, Duckham D, Kulik L, Kuipers B (eds) Spatial Information Theory, 8th International Conference, COSIT 2007, Melbourne, Australia, September 19-23, 2007, Proceedings, Lecture Notes in Computer Science 4736, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lam N, Quattrochi DA (1992) On the issues of scale, resolution, and fractal analysis in the mapping sciences. The Professional Geographer (44): 88–98

    Google Scholar 

  • Marr D (1982) Vision. New York, N.Y., W.H. Freeman

    Google Scholar 

  • McCarthy J, Hayes PJ (1969) Some Philosophical Problems from the Standpoint of Artificial Intelligence. In: Meltzer B, Michie D (eds) Machine Intelligence 4. Edinburgh, Edinburgh University Press, pp 463–502

    Google Scholar 

  • NCGIA (1989a) The U.S. National Center for Geographic Information and Analysis: An Overview of the Agenda for Research and Education. International Journal of Geographical Information Science (IJGIS) 2(3): 117–136

    Google Scholar 

  • NCGIA (1989b) Use and Value of Geographic Information Initiative Four Specialist Meeting, Report and Proceedings, National Center for Geographic Information and Analysis; Department of Surveying Engineering, University of Maine; Department of Geography, SUNY at Buffalo

    Google Scholar 

  • Openshaw S, Charlton M, Wymer C, Craft A (1987) A Mark 1 Geographical Analysis Machine for the automated analysis of point data sets. International Journal of Geographical Information Systems 1(4): 335–358

    Article  Google Scholar 

  • Orth B (1974) Einführung in die Theorie des Messens. Verlag W. Kohlhammer, Stuttgart, Berlin, Köln, Mainz

    Google Scholar 

  • Raubal M (2002). Wayfinding in Built Environments: The Case of Airports. Münster, Solingen, Institut für Geoinformatik, Institut für Geoinformation.

    Google Scholar 

  • Reitsma F, Bittner T (2003) Process, Hierarchy, and Scale. In: Spatial Information Theory, Cognitive and Computational Foundations of Geographic Information Science, International Conference COSIT'03

    Google Scholar 

  • Riedl M (2009) Erstellung von Baulandbilanzen in Tirol. In: 15. Internationale Geodätische Woche Obergurgl, Ötztal Tirol, Wichmann

    Google Scholar 

  • Robinson V, Frank AU (1987) Expert Systems Applied to Problems in Geographic Information Systems: Introduction, Review and Prospects. In: Auto-Carto 8, Baltimore, MA, ASPRS & ACSM

    Google Scholar 

  • Schneider M (1995) Spatial Data Types for Database Systems. Hagen, FernUniversität

    Google Scholar 

  • Searle JR (1995) The Construction of Social Reality. New York, The Free Press

    Google Scholar 

  • Stefanidis A, Nittel S (2005) Geosensor Networks. Boca Raton, Florida: CRC Press

    Google Scholar 

  • Timpf S, Raubal M, Kuhn W (1996) Experiences with Metadata. In: 7th Int. Symposium on Spatial Data Handling, SDH'96, Delft, The Netherlands (August 12-16, 1996), Faculty of Geodectic Engineering, Delft University of Technology

    Google Scholar 

  • Tomlin CD (1983) A Map Algebra. Harvard Computer Graphics Conference, Cambridge, Mass.

    Google Scholar 

  • Zadeh LA (1974) Fuzzy Logic and Its Application to Approximate Reasoning. In: Information Processing, North-Holland Publishing Company

    Google Scholar 

  • Zadeh LA (2002) Some Reflections on Information Granulation and Its Centrality in Granular Computing, Computing with Words, the Computational Theory of Perceptions and Precisiated Natural Language. In: Data Mining, Rough Sets and Granular Computing, Heidelberg, Germany, Physica-Verlag GmbH

    Google Scholar 

  • Zaibert L, Smith B (2004) Real Estate - Foundations of the Ontology of Property. In: Stuckenschmidt H, Stubkjaer E, Schlieder C (eds) The Ontology and Modelling of Real Estate Transactions: European Jurisdictions, Ashgate Pub Ltd, pp 35–51

    Google Scholar 

Download references

Acknowledgements

These ideas were developed systematically for a talk I presented at the University of Münster. I am grateful to Werner Kuhn for this opportunity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew U. Frank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frank, A.U. (2009). Why Is Scale an Effective Descriptor for Data Quality? The Physical and Ontological Rationale for Imprecision and Level of Detail. In: Navratil, G. (eds) Research Trends in Geographic Information Science. Lecture Notes in Geoinformation and Cartography(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88244-2_4

Download citation

Publish with us

Policies and ethics