Skip to main content

Borel Complexity of Topological Operations on Computable Metric Spaces

  • Conference paper
Computation and Logic in the Real World (CiE 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4497))

Included in the following conference series:

Abstract

We study the Borel complexity of topological operations on closed subsets of computable metric spaces. The investigated operations include set theoretic operations as union and intersection, but also typical topological operations such as the closure of the complement, the closure of the interior, the boundary and the derivative of a set. These operations are studied with respect to different computability structures on the hyperspace of closed subsets. These structures include positive or negative information on the represented closed subsets. Topologically, they correspond to the lower or upper Fell topology, respectively, and the induced computability concepts generalize the classical notions of r.e. or co-r.e. subsets, respectively. The operations are classified with respect to effective measurability in the Borel hierarchy and it turns out that most operations can be located in the first three levels of the hierarchy, or they are not even Borel measurable at all. In some cases the effective Borel measurability depends on further properties of the underlying metric spaces, such as effective local compactness and effective local connectedness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  2. Brattka, V., Presser, G.: Computability on subsets of metric spaces. Theoretical Computer Science 305, 43–76 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kechris, A.S.: Classical Descriptive Set Theory. Volume 156 of Graduate Texts in Mathematics. Springer, Heidelberg (1995)

    Book  Google Scholar 

  4. Moschovakis, Y.N.: Descriptive Set Theory. Volume 100 of Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1980)

    Google Scholar 

  5. Brattka, V.: Effective Borel measurability and reducibility of functions. Mathematical Logic Quarterly 51, 19–44 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kuratowski, K.: Topology, vol. 1. Academic Press, London (1966)

    MATH  Google Scholar 

  7. Kuratowski, K.: Topology, vol. 2. Academic Press, London (1968)

    Google Scholar 

  8. Christensen, J.P.R.: On some properties of Effros Borel structure on spaces of closed subsets. Mathematische Annalen 195, 17–23 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christensen, J.P.R.: Necessary and sufficient conditions for the measurability of certain sets of closed subsets. Mathematische Annalen 200, 189–193 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. Christensen, J.P.R.: Topology and Borel Structure. North-Holland, Amsterdam (1974)

    MATH  Google Scholar 

  11. Brattka, V.: Computable invariance. Theoretical Computer Science 210, 3–20 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gherardi, G.: Effective Borel degrees of some topological functions. Mathematical Logic Quarterly 52, 625–642 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Weihrauch, K.: Computability. Volume 9 of EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1987)

    Google Scholar 

  14. Kreitz, C., Weihrauch, K.: Theory of representations. Theoretical Computer Science 38, 35–53 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schröder, M.: Extended admissibility. Theoretical Computer Science 284, 519–538 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brattka, V., Weihrauch, K.: Computability on subsets of Euclidean space I: Closed and compact subsets. Theoretical Computer Science 219, 65–93 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brattka, V.: Random numbers and an incomplete immune recursive set. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 8–13. Springer, Heidelberg (2002)

    Google Scholar 

  18. Holá, L., Pelant, J., Zsilinszky, L.: Developable hyperspaces are metrizable. Applied General Topology 4, 351–360 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Raymond, J.S.: La structure borélienne d’Effros est-elle standard? Fundamenta Mathematicae 100, 201–210 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Effros, E.G.: Convergence of closed subsets in a topological space. Proceedings of the American Mathematical Society 16, 929–931 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  21. Brattka, V.: Plottable real number functions. In: Daumas, M., et al. (eds.) RNC’5 Real Numbers and Computers, INRIA, Institut National de Recherche en Informatique et en Automatique 13–30 Lyon, September 3–5, 2003 (2003)

    Google Scholar 

  22. Cenzer, D., Mauldin, R.D.: On the Borel class of the derived set operator. Bull. Soc. Math. France 110, 357–380 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cenzer, D., Mauldin, R.D.: On the Borel class of the derived set operator: II. Bull. Soc. Math. France 111, 367–372 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kuratowski, K.: Some remarks on the relation of classical set-valued mappings to the Baire classification. Colloquium Mathematicum 42, 273–277 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brattka, V., Gherardi, G. (2007). Borel Complexity of Topological Operations on Computable Metric Spaces. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds) Computation and Logic in the Real World. CiE 2007. Lecture Notes in Computer Science, vol 4497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73001-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73001-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73000-2

  • Online ISBN: 978-3-540-73001-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics