Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 315))

Infection and disease in reservoir and spillover hosts determine patterns of infectious agent availability and opportunities for infection, which then govern the process of transmission between susceptible species. In this chapter, using the zoonotic agents Hendra virus and Nipah virus as examples, the pathogenesis of infection in various species including the wildlife reservoirs and domestic spillover hosts is reviewed with an emphasis on the aspects of pathogenesis which contribute to the dissemination of infection. Through these discussions, the emergence of these zoonotic agents is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrama, H. A. & Scott, J. W. (2006). Quantitative trait loci for Tomato yellow leaf curl virus and Tomato mottle virus resistance in tomato. J. Am. Soc. Hortic. Sci. 131, 267–272. Banerjee, M. K. & Kalloo. (1987). Inheritance of tomato leaf curl virus resistance in Lycopersicon hirsutum f. glabratum. Euphytica 36, 581–584.

    Google Scholar 

  • Chagué, V., Mercier, J. C., Guenard, M., de Courcel, A., & Vedel, F. (1997). Identification of RAPD markers linked to a locus involved in quantitative resistance to TYLCV in tomato by bulked segregant analysis. Theor. Appl. Genet. 95, 671–677.

    Article  Google Scholar 

  • Chiang, B. T., Maxwell, D., & Green, S. (1994). Leaf curl virus in Taiwan. Tomato Leaf Curl Newsl. No. 5, 3.

    Google Scholar 

  • de Castro, A. P., Diez, M. J., & Nuez, F. (2005). Evaluation of breeding tomato lines partially resistant to Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus derived from Lycopersicon chilense. Can. J. Plant Path. 27, 268–275.

    Google Scholar 

  • Fargette, D. (1991). Quelques proprietes de la resistance varietale a l’enroulement de la tomate. Resistance of the Tomato to TYLCV. In H. Laterrot & C. Trousse (Eds.), Proceedings of the Seminar of EEC Contract DGXII-TS2-A-055 F (CD) Partners. Montfavet-Avignon, France:INRA-Stationd’ Amelioration des Plantes Maraicheres, pp. 47–49.

    Google Scholar 

  • Fauquet, C. M., Bisaro, D. M., Briddon, R. W., Brown, J. K., Harrison, B. D., Rybicki, E. P., Stenger, D. C., & Stanley, J. (2003). Revision of taxonomic criteria for species demarcation in the family Geminiviridae, and an updated list of begomovirus species. Arch. Virol. 14, 405–421.

    Article  Google Scholar 

  • Fauquet, C. M., Sawyer, S., Idris, A. M., & Brown, J. K. (2005). Sequence analysis and classification of apparent recombinant begomoviruses infecting tomato in the Nile and Mediterranean Basins. Phytopathology 95, 549–555.

    Article  CAS  PubMed  Google Scholar 

  • Foolad, M. R. & Sharma, A. (2005). Molecular markers as selection tools in tomato breeding. Acta Hortic. 695, 225–240.

    Google Scholar 

  • Friedmann, M., Lapidot, M., Cohen, S., & Pilowsky, M. (1998). A novel source of resistance to tomato yellow leaf curl virus exhibiting a symptomless reaction to viral infection. J. Am. Soc. Hortic. Sci. 123, 1004–1006.

    Google Scholar 

  • Geneif, A. A. (1984). Breeding for resistance to tomato leaf curl virus in tomatoes in the Sudan. Acta Hortic. 143, 469–484.

    Google Scholar 

  • Giordano, L. B., Silva-Lobo, V. L., Santana, F. M., Fonseca, M. E. N., & Boiteux, L. S. (2005). Inheritance of resistance to the bipartite tomato chlorotic mottle begomovirus derived from Lycopersicon esculentum cv. ‘Tyking’. Euphytica 143, 27–33.

    Article  Google Scholar 

  • Green, S. K. & Shanmugasundaram, S. (2006). Chapter in this book.

    Google Scholar 

  • Griffiths, P. D. (1998). Inheritance and linkage of geminivirus resistance genes derived from Lycopersicon chilense Dunal in tomato (Lycopersicon esculentum Mill.). Ph.D. Dissertation, University of Florida, Gainesville, FL.

    Google Scholar 

  • Griffiths, P. D. & Scott, J. W. (2001). Inheritance and linkage of tomato mottle virus resistance genes derived from Lycopersicon chilense accession LA1932. J. Am. Soc. Hortic. Sci. 126, 462–467.

    CAS  Google Scholar 

  • Hanson, P. M., Bernacchi, D., Green, S., Tanksley, S. D., Muniyappa, V., Padmaja, A. S., Chen, H. M., Kuo, G., Fang, D., & Chen, J. T. (2000). Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J. Am. Soc. Hortic. Sci. 125, 15–20.

    CAS  Google Scholar 

  • Hanson, P. M., Green, S. K., & Kuo, G. (2006). Ty-2, a gene on chromosome 11 conditioning gem- inivirus resistance in tomato. Rep. Tomato Genet. Coop. 56, 17–18.

    Google Scholar 

  • Hassan, A. A. & Abdel-Ati, K. E. A. (1999). Genetics of tomato yelloe leaf curl virus tolerance derived from Lycopersicon pimpinellifolium and Lycopersicon pennellii. Egypt J. Hortic. 26, 323–338.

    Google Scholar 

  • Hassan, A. A., Mazyad, H. M., Moustafa, S. E., & Nakhla, M. K. (1982). Assessment of tomato yellow leaf curl virus resistance in the genus Lycopersicon. Egypt. J. Hortic. 9, 13–116. Hassan, A. A., Mazyad, H. M., Moustafa, S. E., Nassar, S. H., Nakhla, M. K., & Sims, W. L. (1984). Inheritance of resistance to tomato yellow leaf curl virus derived from Lycopersicon cheesmanii and Lycopersicon hirsutum. HortScience 19, 574–575.

    Google Scholar 

  • Hassan, A. A., Laterrot, H., Mazyad, H. M., Moustafa, S. E., & Nakhla, M. K. (1987). Use of Lycopersicon peruvianum as a source of resistance to tomato yellow leaf curl virus. Egypt J. Hortic. 14, 173–176.

    Google Scholar 

  • Ioannou, N. (1985). Yellow leaf curl and other virus diseases of tomato in Cyprus. Plant Pathol. 34, 428–434.

    Article  Google Scholar 

  • Ji, Y. & Scott, J. W. (2004). Development of molecular markers linked to Lycopersicon chilense derived geminivirus resistance genes on chromosome 6 of Tomato, In Proceedings of Tomato Breeders Roundtable, Annapolis, Maryland. October 17–24.

    Google Scholar 

  • Ji, Y. & Scott, J. W. (2005a). Identification of RAPD markers linked to Lycopersicon chilense derived geminivirus resistance genes on chromosome 6 of tomato. Acta Hortic. 695, 407–416.

    CAS  Google Scholar 

  • Ji, Y. & Scott, J. W. (2005b). Development of SCAR and CAPS markers linked to tomato bego- movirus resistance genes introgressed from Lycopersicon chilense. HortScience 40, 1090.

    Google Scholar 

  • Ji, Y. & Scott, J. W. (2006a). Development of breeder friendly markers for begomovirus resistance genes derived from L. chilense. In Proceedings of the Tomato Breeders Roundtable. Tampa, FL, USA, May 7–12, roundtable06.ifas.ufl.edu/Schedule.htm.

  • Ji, Y. & Scott, J. W. (2006b). Ty-3, a begomovirus resistance locus linked to Ty-1 on chromosome 6. Rept. Tomato Genetics Cooperation 56, 22–25.

    Google Scholar 

  • Ji, Y., Schuster, D. J., & Scott, J. W. (2007). Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol. Breed. (in press).

    Google Scholar 

  • Jones, D. R. (2003). Plant viruses transmitted by whiteflies. Eur. J. Plant Pathol. 109, 195–219. Kalloo, G. & Banerjee, M. K. (1990). Transfer of tomato leaf curl virus resistance from Lycopersicon hirsutum f. glabratum to L. esculentum. Plant Breed. 105, 156–159.

    Google Scholar 

  • Kasrawi, M. A. (1989). Inheritance of resistance to tomato yellow leaf curl virus (TYLCV) in Lycopersicon pimpinellifolium. Plant Dis. 73, 435–437.

    Article  Google Scholar 

  • Kasrawi, M. A. (1991). Tomato production and tomato yellow leaf curl viruses in Jordan. Resistance of the tomato to TYLCV. In H. Laterrot & C. Trousse (Eds.), Proceedings of the Seminar of EEC Contract DGXII-TS2-A-055 F (CD) Partners. Montfavet-Avignon, France:INRA-Station d’Amelioration des Plantes Maraicheres, pp. 14–16.

    Google Scholar 

  • Kheyr-Pour, A. M., Bendahmane, V. M., Accotto, G. P., Crespi, S., & Gronenborn, B. (1991). Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucleic Acids Res. 19, 6763–6769.

    Article  CAS  PubMed  Google Scholar 

  • Kon, T., Hidayat, S. H., Hase, S., Takahashi, H., & Ikegami, M. (2006). The natural occurrence of two distinct begomoviruses associated with DNAβ and a recombinant DNA in a tomato plant from Indonesia. Phytopathology 96, 517–525.

    Article  CAS  PubMed  Google Scholar 

  • Kosambi, D. (1944). The estimation of map distances from recombination values. Ann. Eugen. 12, 172–175.

    Google Scholar 

  • Lapidot, M., Friedmann, M., Lachman, O., Yehezkel, A., Nahon, S., Cohen, S., & Pilowsky, M. (1997). Comparison of resistance level to tomato yellow leaf curl virus among commercial cultivars and breeding lines. Plant Dis. 81, 1425–1428.

    Article  Google Scholar 

  • Lander, E., Green, P., Abrahamson, J., Barlow, A., Daly, M., Lincoln, S., & Newburg, L. (1987). MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181.

    Article  CAS  PubMed  Google Scholar 

  • Lapidot, M., Friedmann, M., Lachman, O., Yehezkel, A., Nahon, S., Cohen, S., & Pilowsky, M. (1997). Comparison of resistance level to tomato yellow leaf curl virus among commercial cultivars and breeding lines. Plant Dis. 81, 1425–1428.

    Article  Google Scholar 

  • L., & Pilowsky, M. (2000). Breeding tomatoes for resistance to tomato yellow leaf curl begomovirus. Bull. OEPP/EPPO 30, 317–321.

    Google Scholar 

  • Laterrot, H. (1984). Station d’amelioration des plantes maraicheres d’Avigon. Rapport d’activite 1983–1984:86.

    Google Scholar 

  • Laterrot, H. (1992). Resistance genitors to tomato yellow leaf curl virus (TYLCV). Tomato Leaf Curl Newsl. 1, 2–4.

    Google Scholar 

  • Laterrot, H. & Moretti, A. (1994). The chiltylic populations of the EEC-DGX programme. Tomato Leaf Curl Newsl. 5, 2.

    Google Scholar 

  • Maxwell, D. P., Martin, C., Salus, M., Montes, L., & Mejía, L. (2006). Tagging begomovirus resist-ance genes. www.plantpath.wisc.edu/GeminivirusResistantTomatoes/Markers.

  • Maruthi, M. N., Czosnek, H., Vidavski, F., Tarba, S. Y., Milo, J., Leviatov, S., Venkatesh, H. M., Padmaja, A. S., Kukarni, R. S., & Muniyappa, V. (2003). Comaprison of resistance to Tomato leaf curl virus (India) and Tomato yellow leaf curl virus (Israel) among Lycopersicon wild species, breeding lines and hybrids. Eur. J. Plant Pathol. 109, 1–11.

    Article  Google Scholar 

  • Mejía, L., Teni, R. E., Vidavski, F., Czosnek, H., Lapidot, M., Nakhla, M. K., & Maxwell, D. P. (2005). Evaluation of tomato germplasm and selection of breeding lines for resistance to begomoviruses in Guatemala. Acta Hortic. 695, 251–255.

    Google Scholar 

  • Milo, J. (2001). The PCR-based marker REX-1, linked to the gene Mi, can be used as a marker to TYLCV tolerance. In Proceedings of the Tomato Breeders Roundtable, Antigua, Guatemala, March 12–16. www.oardc.ohio-state.edu/tomato/ TBRT%202001%20Abstracts.pdf.

  • Momotaz, A., Scott, J. W., & Schuster, D. J. (2005). Searching for silverleaf whitefly and geminivirus resistance genes from Lycopersicon hirsutum accession LA 1777. Acta Hort. 695, 417–422. Monforte, A. J. & Tanskley, S. D. (2000). Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculen- tum genetic background: a tool for gene mapping and gene discovery. Genome 43, 803–813.

    Google Scholar 

  • Morales, F. J. & Anderson, P. K. (2001). The emergence and dissemination of whitefly-transmitted geminiviruses in Latin America. Arch. Virol. 146, 415–441.

    Article  CAS  PubMed  Google Scholar 

  • Moustafa, S. E. (1991). Tomato cultivation and breeding program for tomato yellow leaf curl virus. Resistance of the tomato to TYLCV. In H. Laterrot & C. Trousse (Eds.), Proceedings of the Seminar of EEC Contract DGXII-TS2-A-055 F (CD) Partners. Montfavet-Avignon, France:INRA-Station de’Amelioration des Plantes Maraicheres, pp. 6–8.

    Google Scholar 

  • Moustafa, S. E. & Nakhla, M. K. (1990). An attempt to develop a new tomato variety resistant to tomato yellow leaf curl virus (TYLCV). Assiut J. Agric. Sci. 21, 167–184.

    Google Scholar 

  • Mueller, L. A., Solow, T. H., Taylor, N., Skwarecki, B., Buels, R., Binns, J., Lin, C. W., Wright, M. H., Ahrens, R., Wang, Y., Herbst, E. V., Keyder, V. R., Menda, N., Zamir, D., & Tanksley, S. D. (2005). The SOL genomics network. A comparative resource for Solanaceae biology and beyond. Plant Physiol. 138, 1310–1317.

    Article  CAS  PubMed  Google Scholar 

  • Nakhla, M. K., Sorenson, A., Mejía, L., Ramírez, P., Karkashian, J. P., & Maxwell, D. P. (2005). Molecular characterization of tomato-infecting begomoviruses in Central America and development of DNA-based detection methods. Acta Hortic. 695, 277–288.

    CAS  Google Scholar 

  • Navot, N., Pichersky, R., Zeidan, M., Zamir, D., & Czosnek, H. (1991). Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic component. Virology 185, 151–161.

    Article  CAS  PubMed  Google Scholar 

  • Padidam, M., Beachy, R. N., & Fauquet, C. M. (1999). A phage single-stranded DNA (ssDNA) binding protein complements ssDNA accumulation of a geminivirus and interferes with viral movement. J. Virol. 73, 1609–1616.

    CAS  PubMed  Google Scholar 

  • Picó, B., Diez, M. J., & Nuez, F. (1996). Viral diseases causing the greatest economic losses to the tomato crop. 2. The tomato yellow leaf curl virus - A review. Sci. Hortic. (Ámsterdam) 67, 151–196.

    Article  Google Scholar 

  • Picó, B., Sifres, A., Elía, M., Díez, M. J., & Nuez, F. (2000). Searching for new resistance sources to tomato yellow leaf curl virus within a highly variable wild Lycopersicon genetic pool. Acta Physiol. Plant. 22, 344–350.

    Article  Google Scholar 

  • Picó, B., Herraiz, J., Ruiz, J. J., & Nuez, F. (2002). Widening the genetic basis of virus resistance in tomato. Sci. Hortic. 94, 73–89.

    Article  Google Scholar 

  • Pietersen, G. & Smith, M. F. (2002). Tomato yellow leaf virus resistant tomatoes show resistance to Tomato curly stunt virus. Plant Dis. 86, 528–534.

    Article  Google Scholar 

  • Pilowsky, M. & Cohen, S. (1974). Inheritance of resistance to tomato yellow leaf curl virus in tomatoes. Phytopathology 64, 632–635.

    Google Scholar 

  • Pilowsky, M. & Cohen, S. (1990). Tolerance to tomato yellow leaf curl virus derived from Lycopersicon peruvianum. Plant Dis. 74, 248–250.

    Article  Google Scholar 

  • Pinón, M., Gómez, O., & Cornide, M. T. (2005). RFLP analysis of Cuban tomato breeding lines with resistance to Tomato yellow leaf curl virus. Acta Hortic. 695, 273–276.

    Google Scholar 

  • Purcell, S., Cherny, S. S., & Sham, P.C. (2003). Genetic power calculator: design of linkage and asso- ciation genetic mapping studies of complex traits. Bioinformatics 19, 149–150.

    Article  CAS  PubMed  Google Scholar 

  • Salati, R., Nahkla, M. K. Rojas, M. R., Guzman, P., Jaquez, J., Maxwell, D. P., & Gilbertson, R. L. (2002). Tomato yellow leaf curl virus in the Dominican Republic: characterization of an infectious clone, virus monitoring in whiteflies, and identification of reservoir hosts. Phytopathology 92, 487–496.

    Article  PubMed  Google Scholar 

  • Salus, M. S. & Maxwell, D. P. (2006). Application of molecular techniques for detection of disease resistance genes in tomato breeding lines for Guatemala. www.plantpath.wisc.edu/InVirLab/docs/ Research%20proposal%20for%20Mindy.pdf.

  • Scott, J. W. (2001). Geminivirus resistance derived from Lycopersicum chilense accessions LA1932, LA1938, and LA2779. In Proceedings of the Breeders Round Table, Antigua, Guatemala, March 12–16. www.oardc.ohio-state.edu/tomato/ TBRT%202001%20Abstracts.pdf.

  • Scott, J. W. & Schuster, D. J. (1991). Screening of accessions for resistance to Florida tomato geminivirus. Rept. Tomato Genet. Coop. 41, 48–50.

    Google Scholar 

  • Scott, J. W., Stevens, M. R., Barten, J. H. M., Thome, C. R., Polston, J. E., Schuster, D. J., & Serra, C. A. (1996). Introgression of resistance to whitefly-transmitted geminiviruses from Lycopersicon chilense to tomato. In D. Gerling & R.T. Mayer (Eds.), Bemisia 1995: Taxonomy, Biology, Damage Control and Management. Andover, UK: Intercept, pp. 357–367.

    Google Scholar 

  • Scott, J. W. (2007). Breeding for resistance to viral pathogens. In M. K. Razdan & A. K. Mattoo (Eds.), Genetic Improvement of Solanaceous Crops, vol 2: Tomato. Enfield, New Hampshire, USA: Science Publishers, US. pp. 447–474.

    Google Scholar 

  • Vidavsky, F., Lapidot, M., & Czosnek, H. (2006). Pile up of resistance genes to TYLVC found in wild species to produce resistant cultivars. In Proceedings of the Tomato Breeders Roundtable, Tampa, FL, USA, May 7–12. roundtable06.ifas.ufl.edu/Schedule.htm.

  • Vidavsky, F. & Czosnek, H. (1998). Tomato breeding lines immune and tolerant to tomato yellow leaf curl virus (TYLCV) issued from Lycopersicon hirsutum. Phytopathology 88, 910–914. Vidavsky, F., Leviatov S, Milo J, Rabinowitch H. D, Kedar N., & Czosnek H (1998) Behavior of tol- erant tomato breeding lines (Lycopersicon esculentum) originated from three different sources (L. peruvianum, L. pimpinellifolium and L. chilense) upon early controlled inoculation by tomato yel-low leaf curl virus. Plant Breed. 117, 165–169.

    Article  Google Scholar 

  • Williamson, V. M., Ho, J. Y., Wu, F. F., Miller, N., & Kaloshian, I. (1994). A PCR-based marker tightly linked to the nematode resistance gene, Mi, in Tomato. Theor. Appl. Genet. 87, 757–763.

    Article  CAS  Google Scholar 

  • Zakay, Y., Navot, N., Zeidan, M., Kedar, N., Rabinowitch, H., Czosnek, H., & Zamir, D. (1991). Screening of Lycopersicon accessions for resistance to tomato yellow leaf curl virus: presence of viral DNA and symptom development. Plant Dis. 75, 279–281.

    Google Scholar 

  • Zamir, D., Michelson, I., Zakay, Y., Navot, N., Zeidan, N., Sarfatti, M., Eshed, Y., Harel, E., Pleban, T., van-Oss, H., Kedar, N., Rabinowitch, H. D., & Czosnek, H. (1994). Mapping and introgres-sion of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theor. Appl. Genet. 88, 141–146.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Daniels, P.W., Halpin, K., Hyatt, A., Middleton, D. (2007). Infection and Disease in Reservoir and Spillover Hosts: Determinants of Pathogen Emergence. In: Childs, J.E., Mackenzie, J.S., Richt, J.A. (eds) Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species Transmission. Current Topics in Microbiology and Immunology, vol 315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70962-6_6

Download citation

Publish with us

Policies and ethics