Skip to main content

Biomechanics of Invasive Hyphal Growth

  • Chapter
Book cover Biology of the Fungal Cell

Part of the book series: The Mycota ((MYCOTA,volume 8))

Abstract

Filamentous fungi penetrate diverse solid substrates, including plant and animal tissues, by a process called invasive hyphal growth. Extending hyphae overcome the resistance of their food sources by the secretion of lytic enzymes and the exertion of mechanical force. The forces utilized for invasive growth are derived from turgor pressure and are regulated through loosening of the apical cell wall of the hypha. This chapter explains how hyphae are pressurized and how they apply this pressure during invasive growth. Recent experimental work is discussed, including the use of miniature strain gauges and laser tweezers to measure the forces exerted by hyphae, and information on hyphal mechanics obtained by atomic force microscopy. Other topics in this chapter include current thinking on the role of secreted enzymes and the cytoskeleton in the invasive process, and the remarkable mechanism of leaf penetration by melanized appressoria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartnicki-Garcia S, Bracker CE, Gierz G, López-Franco R, Lu HS (2000) Mapping the growth of fungal hyphae: orthogonal cell wall expansion during tip growth and the role of turgor. Biophys J 79:2382–2390

    PubMed  CAS  Google Scholar 

  • Bary A de (1866) Morphologie und physiologie der pilze, flechten und myxomyceten. W. Engelmann, Leipzig

    Google Scholar 

  • Bechinger C, Giebel KF, Schnell M, Leiderer P, Deising HB, Bastmeyer M (1999) Opticalmeasurements of invasive forces exerted by appressoria of a plant pathogenic fungus Science 285:1896–1899

    Article  PubMed  CAS  Google Scholar 

  • Bowen WR, Lovitt RW, Wright CJ (2000a) Direct quantification of Aspergillus niger spore adhesion in liquid using an atomic force microscope. J Colloid Interface Sci 228:428–433

    Article  PubMed  CAS  Google Scholar 

  • Bowen WR, Lovitt RW, Wright CJ (2000b) Direct quantification of Aspergillus niger spore adhesion in air using an atomic force microscope. Colloids Surf A 173:205–210

    Article  CAS  Google Scholar 

  • Braun EJ, Howard RJ (1994) Adhesion of fungal spores and germlings to host plant surfaces. Protoplasma 181:202–212

    Article  Google Scholar 

  • Brush L, Money NP (1999) Invasive hyphal growth in Wangiella dermatitidis is induced by stab inoculation and shows dependence upon melanin biosynthesis. Fungal Genet Biol 28:190–200

    Article  PubMed  CAS  Google Scholar 

  • Charras GT, Yarrow JC, Horton MA, Mahadevan L, Mitchison TJ (2005) Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435: 365–369

    Article  PubMed  CAS  Google Scholar 

  • Davis DJ, Lanter K, Makselan S, Bonati C, Asbrock P, Ravishankar JP, Money NP (2006) Relationship between temperature optima and secreted protease activities of three Pythium species and pathogenicity toward plant and animal hosts. Mycol Res 110:96–103

    Article  PubMed  CAS  Google Scholar 

  • Deising HB, Werner S, Wernitz M (2000) The role of fungal appressoria in plant infection. Microbes Infect 2:1631–1641

    Article  PubMed  CAS  Google Scholar 

  • Ebata Y, Yamamoto H, Uchiyama T (1998) Chemical composition of the glue from appressoria of Magnporthe grisea. Biosci Biotechnol Biochem 62:672–674

    Article  CAS  Google Scholar 

  • Geitmann A (2006) Plant and fungal cytomechanics: quantifying and modeling cellular architecture. Can J Bot 84:581–593

    Article  CAS  Google Scholar 

  • Geitmann A, Emons AMC (2000) The cytoskeleton in plant and fungal cell tip growth. J Microsc 198:218–245

    Article  PubMed  CAS  Google Scholar 

  • Goriely A, Tabor M (2006) Estimates of biomechanical forces in Magnaporthe grisea. Mycol Res 110:755–759

    Article  PubMed  Google Scholar 

  • Grove SN, Sweigard JA (1980) Cytochalasin A inhibits spore germination and hyphal tip growth in Gilbertella persicaria. Exp Mycol 4:239–250

    Article  CAS  Google Scholar 

  • Hamer JE, Howard RJ, Chumley FG, Valent B (1998) A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239:288–290

    Article  Google Scholar 

  • Harold FM (2005) Molecules into cells: specifying spatial architecture. Microbiol Mol Biol Rev 69:544–564

    Article  PubMed  CAS  Google Scholar 

  • Harold RL, Money NP, Harold FM (1996) Growth and morphogenesis in Saprolegnia ferax: is turgor required? Protoplasma 191:105–114

    Article  Google Scholar 

  • Heath IB (2000) Organization and function of actin in hyphal tip growth. In: Staiger CJ, Baluska F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 275–300

    Google Scholar 

  • Heath IB, Steinberg G (1999) Mechanisms of hyphal tip growth: tube dwelling amebae revisited. Fungal Genet Biol 28:79–93

    Article  PubMed  CAS  Google Scholar 

  • Heath IB, Bonham M, Akram A, Gupta GD (2003) The interrelationships of actin and hyphal tip growth in the ascomycete Geotrichum candidum. Fungal Genet Biol 38:85–97

    Article  Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Devel Biol 17:159–187

    Article  CAS  Google Scholar 

  • Holland RJ, Williams KL, Khan A (1999) Infection of Meloidogyne javonica by Paecilomyces lilacinus. Nematology 1:131–139

    Article  Google Scholar 

  • Howard RJ (1997) Breaching the outer barriers — cuticle and cell wall penetration. In: Carroll G, Tudzynski P (eds) The Mycota, vol V, part A. Plant relationships. Springer, Berlin Heidelberg New York, pp 43–60

    Google Scholar 

  • Howard RJ, Ferrari MA (1989) Role of melanin in appressorium function. Exp Mycol 13:403–418

    Article  CAS  Google Scholar 

  • Howard RJ, Valent B (1996) Breaking and entering: host penetration by the fungal rice blast pathogen. Annu Rev Microbiol 50:491–512

    Article  PubMed  CAS  Google Scholar 

  • Howard RJ, Ferrari MA, Roach DH, Money NP (1991) Penetration of hard substrates by a fungus employing enormous turgor pressure. Proc Natl Acad Sci USA 88:11281–11284

    Article  PubMed  CAS  Google Scholar 

  • Ingold CT (1986) Protoplasmic flow in hyphae. Trans Br Mycol Soc 86:349–351

    Article  Google Scholar 

  • Jackson SL (2001) Dohyphae pulse as they grow? New Phytol 151:556–560

    Article  Google Scholar 

  • Johns S, Davis CM, Money NP (1999) Pulses in turgor pressure and water potential: resolving the mechanics of hyphal growth. Microbiol Res 154:225–231

    Google Scholar 

  • Lew RR, Levina NN, Walker SK, Garrill A (2004) Turgor regulation in hyphal organisms. Fungal Genet Biol 41:1007–1015

    Article  PubMed  CAS  Google Scholar 

  • López-Franco R, Bartnicki-Garcia S, Bracker CE (1994) Pulsed growth of fungal hyphal tips. Proc Natl Acad Sci USA 91:12228–12232

    Article  PubMed  Google Scholar 

  • Ma H, Snook L, Kaminskyj S, Dahms TY (2005) Surface ultrastructure and elasticity in growing tips and mature regions of Aspergillus hyphae describe wall maturation. Microbiology 151:3679–3688

    Article  PubMed  CAS  Google Scholar 

  • MacDonald E, Millward L, Ravishankar JP, Money NP (2002) Biomechanical interaction between hyphae of two Pythium species (Oomycota) and host tissues. Fungal Genet Biol 37:245–249

    Article  PubMed  Google Scholar 

  • Mathur J (2006) Local interactions shape plant cells. Curr Opin Cell Biol 18:40–p46

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi M (1895) Die Durchbohrung von Membranen durch Pilzfäden. Jahrb Wiss Bot 28:269–289

    Google Scholar 

  • Money NP (1990) Measurement of hyphal turgor. Exp Mycol 14:416–425

    Article  Google Scholar 

  • Money NP (1995) Turgor pressure and the mechanics of fungal penetration. Can J Bot 73[Suppl 1]:S96–S102

    Article  Google Scholar 

  • Money NP (1997a) Wishful thinking of turgor revisited: the mechanics of fungal growth. Fungal Genet Biol 21:173–187

    Article  Google Scholar 

  • Money NP (1997b) Mechanism linking cellular pigmentation and pathogenicity in rice blast disease: a commentary. Fungal Genet Biol 22:151–152

    Article  PubMed  CAS  Google Scholar 

  • Money NP (2001) Functions and evolutionary origin of hyphal turgor pressure. In: Geitmann A, Cresti M, Heath IB (eds) Cell biology of plant and fungal tip growth. Kluwer, Dordrecht, pp 161–170

    Google Scholar 

  • Money NP (2004) The fungal dining habit: a biomechanical perspective. Mycologist 18:71–76

    Article  Google Scholar 

  • Money NP, Hill T (1997) Correlation between endoglucanase secretion and cell wall strength in oomycete fungi: implications for growth and morphogenesis. Mycologia 89:777–785

    Article  CAS  Google Scholar 

  • Money NP, Howard RJ (1996) Confirmation of a link between fungal pigmentation, turgor pressure, and pathogenicity using a new method of turgor measurement. Fungal Genet Biol 20:217–227

    Article  Google Scholar 

  • Money NP, Ravishankar JP (2005) Biomechanics of stipe elongation in the basidiomycete Coprinopsis cinerea. Mycol Res 109:628–635

    Google Scholar 

  • Money NP, Davis CM, Ravishankar JP (2004) Biomechanical evidence for convergent evolution of the invasive growth process among fungi and oomycete water molds. Fungal Genet Biol 41:872–876

    Article  PubMed  Google Scholar 

  • Pickett-Heaps JD, Klein AG (1998) Tip growth in plant cells may be amoeboid and not generated by turgor pressure. Proc R Soc Lond Ser B 265:1453–1459

    Article  Google Scholar 

  • Pouliot JM, Walton I, Nolen-Parkhouse M, Abu-Lail LI, Camesano TA (2005) Adhesion of Aureobasidium pullulans is controlled by uronic acid based polymers and pullulan. Biomacromolecules 6:1122–1131

    Article  PubMed  CAS  Google Scholar 

  • Pryce-Jones E, Carver T, Gurr S (1999) The roles of cellulase enzymes and mechanical force in host penetration by Erysiphe graminis f. sp. hordei. Physiol Mol Plant Pathol 55:175–182

    Article  CAS  Google Scholar 

  • Ravishankar JP, Davis CM, Davis DJ, MacDonald E, Makselan SD, Millward L, Money NP (2001) Mechanics of solid tissue invasion by the mammalian pathogen Pythium insidiosum. Fungal Genet Biol 34:167–175

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt MO (1892) Das Wachsthumder Pilzhyphen. Jahrb Wiss Bot 23:479–566

    Google Scholar 

  • Reis H, Pfiffi S, Hahn M (2005) Molecular and functional characterization of a secreted lipase from Botrytis cinerea. Mol Plant Pathol 6:257–267

    Article  CAS  Google Scholar 

  • Sampson KN, Lew RR, Heath IB (2003) Time series analysis demonstrates the absence of pulsatile hyphal growth. Microbiology 149:3111–3119

    Article  PubMed  CAS  Google Scholar 

  • Solomon PS, Tan K-C, Oliver RP (2003) The nutrient supply of pathogenic fungi: a fertile field for study. Mol Plant Pathol 4:203–210

    Article  Google Scholar 

  • Talbot NJ (2003) On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol 57:177–202

    Article  PubMed  CAS  Google Scholar 

  • Thines E, Weber RWS, Talbot NJ (2000) MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12:1703–1718

    Article  PubMed  CAS  Google Scholar 

  • Tucker SL, Talbot NJ (2001) Surface attachment and prepenetration stage development by plant pathogenic fungi. Annu Rev Phytopathol 39:385–417

    Article  PubMed  CAS  Google Scholar 

  • Walker SK, Garrill A (2006) Actin microfilaments in fungi. Mycologist 20:26–31

    Article  Google Scholar 

  • Walker SK, Chitcholtan K, Yu Y-P, Christenhusz GM, Garrill A (2006) Invasive hyphal growth: an F-actin depleted zone is associated with invasive hyphae of the oomycetes Achlya bisexualis and Phytophthora cinnamomi. Fungal Genet Biol 43:357–365

    Article  PubMed  CAS  Google Scholar 

  • Wang Z-Y, Jenkinson JM, Holcombe LJ, Soanes DM, Veneault-Fourrey C, Bhambra GK, Talbot NJ (2005) The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea. Biochem Soc Trans 33:384–388

    Article  PubMed  CAS  Google Scholar 

  • Weber RWS, Wakley GE, Thines E, Talbot NJ (2001) The vacuole as central element of the lytic system and sink for lipid droplets in maturing appressoria of Magnaporthe grisea. Protoplasma 216:101–112

    PubMed  CAS  Google Scholar 

  • Wirsel GR, Reimann S, Deising HB (2004) Genetics of phytopathology: fungal morphogenesis and plant infection. Prog Bot 65:147–178

    CAS  Google Scholar 

  • Wright GD, Arlt J, Poon WCK, Read ND (2005) Measuring fungal growth forces with optical tweezers. Proc SPIE 5930:F1–F7

    Google Scholar 

  • Xiang X, Plamann M (2003) Cytoskeleton and motor proteins in filamentous fungi. Curr Opin Microbiol 6:628–633

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Money, N.P. (2007). Biomechanics of Invasive Hyphal Growth. In: Howard, R.J., Gow, N.A.R. (eds) Biology of the Fungal Cell. The Mycota, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70618-2_10

Download citation

Publish with us

Policies and ethics