Skip to main content

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 11))

Abstract

A physical model for dry snow avalanche flow is presented. The well established model for dense granular flow proposed by Savage and Hutter [21] is adapted to describe the dense, lower part of a snow avalanche. In order to account for the high velocities of snow avalanches, a velocity dependent bed shear stress in addition to the Coulomb law for dry friction is introduced. Since the model has to be applied to arbitrarily shaped topographies, certain simplifying assumptions of geometrical nature must be introduced. In contrast to former numerical implementations of the Savage-Hutter model based on Finite Difference schemes, a Lagrangian Finite Volume method is formulated using integral balance laws. For the powder snow avalanche forming on top of the denser part a mixture model with a constant slip velocity between ice particles and air is introduced. The k-є turbulence model modified in order to account for buoyancy effects caused by the suspended particles is implemented. The resulting system of equations is solved by applying a Finite Volume scheme on a fixed grid. The transfer of snow mass from the dense flow into the powder snow avalanche is modelled by an analogy to turbulent momentum transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AVL List (2001) FIRE v7.3 Theory (volume 3). AVL List GmbH Graz

    Google Scholar 

  2. Bagnold R.A. (1954) Experiments on gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. London 225A, 49–63

    Article  Google Scholar 

  3. Beghin P., Hopfinger E.J., Britter R.E (1979) Gravitational convection from instantaneous sources on inclined boundaries. J. Fluid Mech. 107, 407–422

    Article  Google Scholar 

  4. Edelsbrunner H. (1987) Algorithms in combinatorial geometry. EATCS monographs on theoretical computer science 10, Springer, Heidelberg

    Book  Google Scholar 

  5. Fukushima and Parker (1990) Powder Snow Avalanches: Theory and application, J. Glaciology 36 (123), 229–237

    Google Scholar 

  6. Gray J.M.N.T., Tai Y.C. (1998) On the inclusion of a velocity-dependent basal drag in avalanche models. Annal. Glac. 26, 277–280

    Google Scholar 

  7. Gray J.M.N.T., Wieland M., Hutter K. (1999) Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. Lond. A 455, 1841–1874

    Google Scholar 

  8. Greve R., Hutter K. (1993) Motion of a granular avalanche in a convex and concave curved chute: experiments and theoretical predictions. Phil. Trans. R. Soc. London A 342, 573–600

    Google Scholar 

  9. Haff P.K. (1983) Grain flow as a fluid mechanical phenomenon. J. Fluid Mech. 134, 401–430

    Article  MATH  Google Scholar 

  10. Hagen G. (1997) Endbericht über das AVL-Staublawinenmodell. Forsttechnischer Dienst für Wildbach-und Lawinenverbauung (Avalanche and Torrent Control, Forestry Service), Sektion Vorarlberg, Bregenz.

    Google Scholar 

  11. Hufnagl H. (1988) Ergebnisse einer rechnerischen Auswertung von fünf Lawinen des Katastrophenwinters 83/84. Proc. Interpraevent 88 3, 227–249

    Google Scholar 

  12. Hutter K. (1996) Avalanche Dynamics. In V.P. Singh, editor, Hydrology of Disasters, 317–394, Kluwer, Dordrecht

    Chapter  Google Scholar 

  13. Issler D. (2003) Experimental Information on the Dynamics of Dry-Snow Avalanches. This volume

    Google Scholar 

  14. Johnson P.C., Nott P., Jackson R. (1990) Frictional-collisional equations of motion for particulate flows and their application to chutes. J. Fluid Mech. 210, 501–535

    Article  Google Scholar 

  15. Koch T., Greve R., Hutter K. (1994) Unconfined flow of granular avalanches along a partly curved surface. II. Experiments and numerical computations. Proc. R. Soc. Lond. A 445, 415–435

    Google Scholar 

  16. Mellor G.L. (1972) The Large Reynold Number Asymptotic Theory of Turbulent Boundary Layers. Int. J. Engng. Sci. 10, 851–873

    Article  MathSciNet  Google Scholar 

  17. Patankar S.V. (1980) Numerical heat transfer and fluid flow. McGraw-Hill, New York

    MATH  Google Scholar 

  18. Prandtl L., Oswatitsch K., Wieghardt K. (1984) Führer durch die Strömungslehre. Eighth edition, Vieweg, Braunschweig/Wiesbaden

    MATH  Google Scholar 

  19. Rodi W. (1980) Turbulence models and their applications in hydraulics. IAHR, Delft

    Google Scholar 

  20. Sailer R., Rammer L., Sampl P. (2002) Recalculation of an Artificially Released Avalanche with SAMOS and Validation with Measurements from a Pulsed Doppler Radar. To appear in Natural Hazards and Earth System Science 2, 3 /4, 211–217

    Article  Google Scholar 

  21. Savage S.B., Hutter K. (1989) The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177 215

    MathSciNet  Google Scholar 

  22. Schlichting H., Gersten K. (2000) Boundary Layer Theory. Springer, Heidelberg

    MATH  Google Scholar 

  23. Stadler R. (1986) Stationäres, schnelles Fließen von dicht gepackten trockenen und feuchten Schüttgütern. PhD. Thesis, University of Karlsruhe, Karlsruhe

    Google Scholar 

  24. Tai Y.C., Gray J.M.N.T. (1998) Limiting stress states in granular avalanches. Annals Glaciology 26, 272–276

    Google Scholar 

  25. Versteeg H.K., Malalasekera W. (1995) An Introduction to Computational Fluid Dynamics. The finite volume method. Addison Wesley, Longman, Essex

    Google Scholar 

  26. Voellmy A. (1955) Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung 73, 12. English Translation (1964) On the destructive force of avalanches, U.S. Department of Agriculture, Forest Service, Alta Avalanche Study Center Translation 2

    Google Scholar 

  27. Zwinger T., Kluwick A. (2000) Schneeaufnahme am Kopf einer Trockenschneelawine. Project report, Inst. for Fluid Mechanics a. Heat Transfer, Vienna University of Technology

    Google Scholar 

  28. Zwinger T. (2000) Dynamik einer Trockenschneelawine auf beliebig geformten Berghängen. PhD. Thesis, Vienna University of Technology, Vienna

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zwinger, T., Kluwick, A., Sampl, P. (2003). Numerical Simulation of Dry-Snow Avalanche Flow over Natural Terrain. In: Hutter, K., Kirchner, N. (eds) Dynamic Response of Granular and Porous Materials under Large and Catastrophic Deformations. Lecture Notes in Applied and Computational Mechanics, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36565-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36565-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05650-5

  • Online ISBN: 978-3-540-36565-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics