Skip to main content

Scalable Cardiac Electro-Mechanical Solvers and Reentry Dynamics

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XXIV (DD 2017)

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 125))

Included in the following conference series:

  • 728 Accesses

Abstract

We present a scalable solver for the three-dimensional cardiac electro-mechanical coupling (EMC) model, which represents, currently, the most complete mathematical description of the interplay between the electrical and mechanical phenomena occurring during a heartbeat. The most computational demanding parts of the EMC model are: the electrical current flow model of the cardiac tissue, called Bidomain model, consisting of two non-linear partial differential equations of reaction-diffusion type; the quasi-static finite elasticity model for the deformation of the cardiac tissue. Our finite element parallel solver is based on: Block Jacobi and Multilevel Additive Schwarz preconditioners for the solution of the linear systems deriving from the discretization of the Bidomain equations; Newton-Krylov-Algebraic-Multigrid or Newton-Krylov-BDDC algorithms for the solution of the non-linear algebraic system deriving from the discretization of the finite elasticity equations. Three-dimensional numerical test on two linux clusters show the effectiveness and scalability of the EMC solver in simulating both physiological and pathological cardiac dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Balay et al., PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.3, Argonne National Laboratory, 2012.

    Google Scholar 

  2. P. Colli Franzone, L.F. Pavarino, S. Scacchi, Mathematical Cardiac Electrophysiology, MSA, vol. 13 (Springer, New York, 2014)

    MATH  Google Scholar 

  3. P. Colli Franzone, L.F. Pavarino, S. Scacchi, Bioelectrical effects of mechanical feedbacks in a strongly coupled cardiac electro-mechanical model. Math. Models Methods Appl. Sci. 26, 27–57 (2016)

    Article  MathSciNet  Google Scholar 

  4. P. Colli Franzone, L.F. Pavarino, S. Scacchi, Effects of mechanical feedback on the stability of cardiac scroll waves: a bidomain electro-mechanical simulation study. Chaos 27, 093905 (2017)

    Article  MathSciNet  Google Scholar 

  5. C.R. Dohrmann, A preconditioner for substructuring based on constrained energy minimization. SIAM J. Sci. Comput. 25, 246–258 (2003)

    Article  MathSciNet  Google Scholar 

  6. T.S.E. Eriksson et al., Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction. Math. Mech. Solids 18, 592–606 (2013)

    Article  MathSciNet  Google Scholar 

  7. V. Gurev et al., Models of cardiac electromechanics based on individual hearts imaging data: image-based electromechanical models of the heart. Biomech. Model Mechanobiol. 10, 295–306 (2011)

    Article  Google Scholar 

  8. A. Klawonn, O. Rheinbach, Highly scalable parallel domain decomposition methods with an application to biomechanics. ZAMM-Z. Angew. Math. Mech. 90, 5–32 (2010)

    Article  MathSciNet  Google Scholar 

  9. A. Klawonn, O.B. Widlund, Dual-primal FETI methods for linear elasticity. Commun. Pure Appl. Math., 59, 1523–1572 (2006)

    Article  MathSciNet  Google Scholar 

  10. S. Land et al., An analysis of deformation-dependent electromechanical coupling in the mouse heart. J. Physiol. 590, 4553–4569 (2012)

    Article  Google Scholar 

  11. J. Mandel, C.R. Dohrmann, Convergence of a balancing domain decomposition by constraints and energy minimization. Linear Algebra Appl. 10, 639–659 (2003)

    Article  MathSciNet  Google Scholar 

  12. S.A. Niederer, N.P. Smith, A mathematical model of the slow force response to stretch in rat ventricular myocites. Biophys. J. 92, 4030–4044 (2007)

    Article  Google Scholar 

  13. L.F. Pavarino, S. Scacchi, Multilevel additive Schwarz preconditioners for the Bidomain reaction-diffusion system. SIAM J. Sci. Comput. 31, 420–443 (2008)

    Article  MathSciNet  Google Scholar 

  14. L.F. Pavarino, S. Zampini, O.B. Widlund, BDDC preconditioners for spectral element discretizations of almost incompressible elasticity in three dimensions. SIAM J. Sci. Comput. 32(6), 3604–3626 (2010)

    Article  MathSciNet  Google Scholar 

  15. L.F. Pavarino, S. Scacchi, S. Zampini, Newton-krylov-BDDC solvers for non-linear cardiac mechanics. Comput. Methods Appl. Mech. Eng. 295, 562–580 (2015)

    Article  Google Scholar 

  16. S. Rossi et al., Orthotropic active strain models for the numerical simulation of cardiac biomechanics. Int. J. Numer. Methods Biomed. Eng. 28, 761–788 (2012)

    Article  MathSciNet  Google Scholar 

  17. J. Sundnes et al., Improved discretisation and linearisation of active tension in strongly coupled cardiac electro-mechanics simulations. Comput. Methods Biomech. Biomed. Eng. 17, 604–615 (2014)

    Article  Google Scholar 

  18. K.H.W.J. ten Tusscher et al., A model for human ventricular tissue. Am. J. Phys. Heart. Circ. Physiol. 286, H1573–H1589 (2004)

    Article  Google Scholar 

  19. K.H.W.J. ten Tusscher, A.V. Panfilov, Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 291, H1088–H1100 (2006)

    Article  Google Scholar 

  20. A. Toselli, O.B. Widlund, Domain Decomposition Methods: Algorithms and Theory (Springer, Berlin, 2004)

    MATH  Google Scholar 

  21. F.J. Vetter, A.D. McCulloch, Three-dimensional stress and strain in passive rabbit left ventricle: a model study. Ann. Biomed. Eng. 28, 781–792 (2000)

    Article  Google Scholar 

  22. S. Zampini, Dual-primal methods for the cardiac bidomain model. Math. Models Methods Appl. Sci. 24, 667–696 (2014)

    Article  MathSciNet  Google Scholar 

  23. S. Zampini, PCBDDC: a class of robust dual-primal preconditioners in PETSc. SIAM J. Sci. Comput. 38(5), S282–S306 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Colli Franzone , L. F. Pavarino , S. Scacchi or Stefano Zampini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Franzone, P.C., Pavarino, L.F., Scacchi, S., Zampini, S. (2018). Scalable Cardiac Electro-Mechanical Solvers and Reentry Dynamics. In: Bjørstad, P., et al. Domain Decomposition Methods in Science and Engineering XXIV . DD 2017. Lecture Notes in Computational Science and Engineering, vol 125. Springer, Cham. https://doi.org/10.1007/978-3-319-93873-8_3

Download citation

Publish with us

Policies and ethics