Skip to main content

MCH and Thermoregulation

  • Chapter
  • First Online:

Abstract

Homeothermy represents a remarkable step in animal evolution, albeit at a very high cost in terms of metabolic demand. The maintenance of core body temperature in mammals represents one of the prominent physiological components contributing to the basal metabolic rate. Homeostatic thermoregulation is coordinated by the central nervous system by means of different strategies, spanning from behavioral modifications, aimed at finding a better environment, to the activation or inhibition of key regulatory mechanisms, which are mainly driven by the autonomic nervous system. The hypothalamic neuropeptide MCH plays a pivotal role in regulating basal metabolism, and the activation of this system results in a slowing down of the metabolic rate and also stimulates food intake. On the contrary, blocking the MCH system, in animal models, promotes a lean phenotype with higher body temperature. Even though MCH is not involved in thermoregulatory processes, modifying MCH activity induces metabolic rate modifications, and thermoregulation is modified accordingly. The activation of the MCH system also leads to the dampening of the normal daily oscillation of body temperature. The well-known involvement of MCH in wake-sleep cycle regulation, by stabilizing sleep, and in particular REM sleep, reinforces the hypothesis that the functions of metabolism, thermoregulation, and sleep regulation are closely linked.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahnaou A, Dautzenberg FM, Huysmans H, Steckler T, Drinkenburg WH (2011) Contribution of melanin-concentrating hormone (MCH1) receptor to thermoregulation and sleep stabilization: evidence from MCH1 (−/−) mice. Behav Brain Res 218:42–50

    Article  CAS  Google Scholar 

  • Amici R, Bastianini S, Berteotti C, Cerri M, Del Vecchio F, Lo Martire V, Luppi M, Perez E, Silvani A, Zamboni G, Zoccoli G (2014) Sleep and bodily functions: the physiological interplay between body homeostasis and sleep homeostasis. Arch Ital Biol 152:66–78

    CAS  PubMed  Google Scholar 

  • Apergis-Schoute J, Iordanidou P, Faure C, Jego S, Schone C, Aitta-Aho T, Adamantidis A, Burdakov D (2015) Optogenetic evidence for inhibitory signaling from orexin to MCH neurons via local microcircuits. J Neurosci 35:5435–5441

    Article  CAS  Google Scholar 

  • Astrand A, Bohlooly-Y M, Larsdotter S, Mahlapuu M, Andersén H, Tornell J, Ohlsson C, Snaith M, Morgan DG (2004) Mice lacking melanin-concentrating hormone receptor 1 demonstrate increased heart rate associated with altered autonomic activity. Am J Physiol Regul Integr Comp Physiol 287:R749–R758

    Article  CAS  Google Scholar 

  • Blessing W, Mohammed M, Ootsuka Y (2013) Brown adipose tissue thermogenesis, the basic rest-activity cycle, meal initiation, and bodily homeostasis in rats. Physiol Behav 121:61–69

    Article  CAS  Google Scholar 

  • Bornkamp JL, Robertson S, Isaza NM, Harrison K, DiGangi BA, Pablo L (2016) Effects of anesthetic induction with a benzodiazepine plus ketamine hydrochloride or propofol on hypothermia in dogs undergoing ovariohysterectomy. Am J Vet Res 77:351–357

    Article  CAS  Google Scholar 

  • Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW (2012) Control of sleep and wakefulness. Physiol Rev 92:1087–1187

    Article  CAS  Google Scholar 

  • Cabanac M (1996) The place of behavior in physiology. In: Fregly MJ, Blatteis CM (eds) Handbook of physiology. Environmental physiology (section 4). Oxford University Press, Oxford, pp 1523–1536

    Google Scholar 

  • Cerri M (2017) The central control of energy expenditure: exploiting torpor for medical applications. Annu Rev Physiol 79:167–186

    Article  CAS  Google Scholar 

  • Cerri M, Luppi M, Tupone D, Zamboni G, Amici R (2017) REM sleep and endothermy: potential sites and mechanism of a reciprocal interference. Front Physiol 8:624

    Article  Google Scholar 

  • Clapham JC (2012) Central control of thermogenesis. Neuropharmacology 63:111–123

    Article  CAS  Google Scholar 

  • Clark-Price S (2015) Inadvertent perianesthetic hypothermia in small animal patients. Vet Clin North Am Small Anim Pract 45:983–994

    Article  Google Scholar 

  • Eban-Rothschild A, Giardino WJ, de Lecea L (2017) To sleep or not to sleep: neuronal and ecological insights. Curr Opin Neurobiol 44:132–138

    Article  CAS  Google Scholar 

  • Glick M, Segal-Lieberman G, Cohen R, Kronfeld-Schor N (2009) Chronic MCH infusion causes a decrease in energy expenditure and body temperature, and an increase in serum IGF-1 levels in mice. Endocrine 36:479–485

    Article  CAS  Google Scholar 

  • Grigg GC, Beard LA, Augee ML (2004) The evolution of endothermy and its diversity in mammals and birds. Physiol Biochem Zool 77:982–997

    Article  Google Scholar 

  • Ito M, Gomori A, Ishihara A, Oda Z, Mashiko S, Matsushita H, Yumoto M, Ito M, Sano H, Tokita S, Moriya M, Iwaasa H, Kanatani A (2004) Characterization of MCH-mediated obesity in mice. Am J Physiol Endocrinol Metab 284:E940–E945

    Article  Google Scholar 

  • Krauchi K (2007) The thermophysiological cascade leading to sleep initiation in relation to phase of entrainment. Sleep Med Rev 11:439–451

    Article  Google Scholar 

  • Kushikata T, Sawada M, Niwa H, Kudo T, Kudo M, Tonosaki M, Hirota K (2016) Ketamine and propofol have opposite effects on postanesthetic sleep architecture in rats: relevance to the endogenous sleep-wakefulness substances orexin and melanin-concentrating hormone. J Anesth 30:437–443

    Article  Google Scholar 

  • Lovegrove BG (2012) The evolution of endothermy in Cenozoic mammals: a plesiomorphic-apomorphic continuum. Biol Rev Camb Philos Soc 87:128–162

    Article  Google Scholar 

  • Luppi PH, Clément O, Fort P (2013) Paradoxical (REM) sleep genesis by the brainstem is under hypothalamic control. Curr Opin Neurobiol 23:786–792

    Article  CAS  Google Scholar 

  • Martelli D, Luppi M, Cerri M, Tupone D, Perez E, Zamboni G, Amici R (2012) Waking and sleeping following water deprivation in the rat. PLoS One 7:e46116

    Article  CAS  Google Scholar 

  • Monti JM, Torterolo P, Lagos P (2013) Melanin-concentrating hormone control of sleep-wake behavior. Sleep Med Rev 17:293–298

    Article  Google Scholar 

  • Morrison SF, Madden CJ, Tupone D (2014) Central neural regulation of brown adipose thermogenesis and energy expenditure. Cell Metab 19:741–756

    Article  CAS  Google Scholar 

  • Nespolo RF, Bacigalupe LD, Figueroa CC, Koteja P, Opazo JC (2011) Using new tools to solve an old problem: the evolution of endothermy in vertebrates. Trends Ecol Evol 26:414–423

    Article  Google Scholar 

  • Oldfield BJ, Giles ME, Watson A, Anderson C, Colvill LM, McKinley MJ (2002) The neurochemical characterisation of hypothalamic pathways projecting polysynaptically to brown adipose tissue in the rat. Neuroscience 110:515–526

    Article  CAS  Google Scholar 

  • Pereira-da-Silva M, Torsoni MA, Nourani HV, Augusto VD, Souza CT, Gasparetti AL, Carvalheira JB, Ventrucci G, Marcondes MC, Cruz-Neto AP, Saad MJ, Boschero AC, Carneiro EM, Velloso LA (2003) Hypothalamic melanin-concentrating hormone is induced by cold exposure and participates in the control of energy expenditure in rats. Endocrinology 144:4831–4840

    Article  CAS  Google Scholar 

  • Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, Mathes WF, Przypek J, Kanarek R, Maratos-Flier E (1996) A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380:243–247

    Article  CAS  Google Scholar 

  • Saito Y, Cheng M, Leslie FM, Civelli O (2001) Expression of the melanin-concentrating hormone (MCH) receptor mRNA in the rat brain. J Comp Neurol 435:26–40

    Article  CAS  Google Scholar 

  • Satinoff E (1996) Behavioral thermoregulation in the cold. In: Fregly MJ, Blatteis CM (eds) Handbook of physiology. Environmental physiology (section 4). Oxford University Press, Oxford, pp 481–505

    Google Scholar 

  • Segal-Lieberman G, Bradley RL, Kokkotou E, Carlson M, Trombly DJ, Wang X, Bates S, Myers MG Jr, Flier JS, Maratos-Flier E (2003) Melanin-concentrating hormone is a critical mediator of the leptin-deficient phenotype. Proc Natl Acad Sci U S A 100:10085–10090

    Article  CAS  Google Scholar 

  • Tan CP, Sano H, Iwaasa H, Pan J, Sailer AW, Hreniuk DL, Feighner SD, Palyha OC, Pong SS, Figueroa DJ, Austin CP, Jiang MM, Yu H, Ito J, Ito M, Guan XM, MacNeil DJ, Kanatani A, Van der Ploeg LH, Howard AD (2002) Melanin-concentrating hormone receptor subtypes 1 and 2: species-specific gene expression. Genomics 79:785–792

    Article  CAS  Google Scholar 

  • Tupone D, Madden CJ, Cano G, Morrison SF (2011) An orexinergic projection from perifornical hypothalamus to raphe pallidus increases rat brown adipose tissue thermogenesis. J Neurosci 31:15944–15955

    Article  CAS  Google Scholar 

  • Vetrivelan R, Kong D, Ferrari LL, Arrigoni E, Madara JC, Bandaru SS, Lowell BB, Lu J, Saper CB (2016) Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience 336:102–113

    Article  CAS  Google Scholar 

  • Willmer P, Stone G, Johnston I (eds) (2000) Environmental physiology of animals. Blackwell Science, Oxford, pp 415–509

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Luppi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luppi, M. (2018). MCH and Thermoregulation. In: Pandi-Perumal, S., Torterolo, P., Monti, J. (eds) Melanin-Concentrating Hormone and Sleep . Springer, Cham. https://doi.org/10.1007/978-3-319-75765-0_7

Download citation

Publish with us

Policies and ethics