Skip to main content

Information Decomposition: A Tool to Dissect Cardiovascular and Cardiorespiratory Complexity

  • Chapter
  • First Online:

Abstract

This chapter reports some recent developments of information-theoretic concepts applied to the description of coupled dynamical systems, which allow to decompose the entropy of an assigned target system into components reflecting the information stored in the system and the information transferred to it from the other systems, as well as the nature (synergistic or redundant) of the information transferred to the target. The decomposition leads to well-defined measures of information dynamics which in the chapter will be defined theoretically, computed in simulations of linear Gaussian systems and implemented in practice through the application to heart period, arterial pressure and respiratory time series. The application leads to decompose the information carried by heart rate variability into amounts reflecting cardiac dynamics, vascular and respiratory effects on these dynamics, as well as the interaction between cardiovascular and cardiorespiratory effects. The analysis of head-up and head-down tilt test protocols demonstrates the relevance of information decomposition in dissecting cardiovascular control mechanisms and accept or reject physiological hypotheses about their activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Malliani, A.: Principles of cardiovascular neural regulation in health and disease. Kluwer academic publishers, Norwell, MA, USA (2000)

    Book  Google Scholar 

  2. Cohen, M.A., Taylor, J.A.: Short-term cardiovascular oscillations in man: measuring and modelling the physiologies. J. Physiol. 542, 669–683 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eckberg, D.L.: Point:counterpoint: respiratory sinus arrhythmia is due to a central mechanism vs. respiratory sinus arrhythmia is due to the baroreflex mechanism. J. Appl. Physiol. 106, 1740–1742 (2009)

    Article  PubMed  Google Scholar 

  4. Koepchen, H.P.: History of studies and concepts of blood pressure waves. In: Miyakawa, K., Polosa, C., Koepchen, H.P. (eds.) Mechanisms of blood pressure waves. Springer, Berlin (1984)

    Google Scholar 

  5. Faes, L., Porta, A.: Conditional entropy-based evaluation of information dynamics in physiological systems. In: Vicente, R., Wibral, M., Lizier, J.T. (eds.) Directed Information Measures in Neuroscience. Springer-Verlag, Berlin (2014)

    Google Scholar 

  6. Wibral, M., Lizier, J.T., Priesemann, V.: Bits from biology for biologically-inspired computing. Front. Robot. AI 2. 5 (2015). doi:10.3389/frobt.2015.00005

  7. Faes, L., Kugiumtzis, D., Nollo, G., Jurysta, F., Marinazzo, D.: Estimating the decomposition of predictive information in multivariate systems. Phys. Rev. E. 91, 032904 (2015)

    Article  Google Scholar 

  8. Faes, L., Porta, A., Nollo, G.: Information decomposition in bivariate systems: theory and application to cardiorespiratory dynamics. Entropy. 17, 277–303 (2015)

    Article  Google Scholar 

  9. Porta, A., Faes, L., Nollo, G., Bari, V., Marchi, A., De Maria, B., Takahashi, A.C.M., Catai, A.M.: Conditional self-entropy and conditional joint transfer entropy in heart period variability during graded postural challenge. PLoS One. 10, e0132851 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  10. Porta, A., Faes, L., Marchi, A., Bari, V., De Maria, B., Guzzetti, S., Colombo, R., Raimondi, F.: Disentangling cardiovascular control mechanisms during head-down tilt via joint transfer entropy and self-entropy decompositions. Front. Physiol. 6, 301 (2015)

    PubMed  PubMed Central  Google Scholar 

  11. Triedman, J.K., Perrott, M.H., Cohen, R.J., Saul, J.P.: Respiratory sinus arrhythmia-time-domain characterization using autoregressive moving average analysis. Am. J. Physiol. Heart Circ. Physiol. 268, H2232–H2238 (1995)

    CAS  Google Scholar 

  12. Baselli, G., Cerutti, S., Civardi, S., Malliani, A., Pagani, M.: Cardiovascular variability signals: towards the identification of a closed-loop model of the neural control mechanisms. I.E.E.E. Trans. Biomed. Eng. 35, 1033–1046 (1988)

    Article  CAS  Google Scholar 

  13. Porta, A., De Maria, B., Bari, V., Marchi, A., Faes, L.: Are nonlinear model-free approaches for the assessment of the entropy-based complexity of the cardiac control superior to a linear model-based one? IEEE Trans. Biomed. Eng. 64(6), 1287–1296 (2017). doi:10.1109/TBME.2016.2600160

    Article  PubMed  Google Scholar 

  14. Faes, L., Porta, A., Nollo, G., Javorka, M.: Information decomposition in multivariate systems: definitions, implementation and application to cardiovascular networks, Entropy, special issue on Multivariate entropy measures and their applications, 19(1), 5 (2017). doi: 10.3390/e19010005.

  15. Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley, New York (2006)

    Google Scholar 

  16. Barnett, L., Barrett, A.B., Seth, A.K.: Granger causality and transfer entropy are equivalent for Gaussian variables. Phys. Rev. Lett. 103, 238701 (2009)

    Article  PubMed  Google Scholar 

  17. Montano, N., Gnecchi Ruscone, T., Porta, A., Lombardi, F., Pagani, M., Malliani, A.: Power spectrum analysis of heart rate variability to assess the change in sympathovagal balance during graded orthostatic tilt. Circulation. 90, 1826–1831 (1994)

    Article  CAS  PubMed  Google Scholar 

  18. Nagaya, K., Wada, F., Nakamitsu, S., Sagawa, S., Shiraki, K.: Responses of the circulatory-system and muscle sympathetic-nerve activity to head-down tilt in humans. Am. J. Phys. Regul. Integr. Comp. Phys. 268, R1289–R1294 (1995)

    CAS  Google Scholar 

  19. Standards of measurement, physiological interpretation, and clinical use. Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology: Heart rate variability. Eur. Heart J. 17, 354–381 (1996)

    Google Scholar 

  20. Magagnin, V., Bassani, T., Bari, V., Turiel, M., Maestri, R., Pinna, G.D., Porta, A.: Non-stationarities significantly distort short-term spectral, symbolic and entropy heart rate variability indices. Physiol. Meas. 32, 1775–1786 (2011)

    Article  PubMed  Google Scholar 

  21. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Contr. 19, 716–723 (1974)

    Article  Google Scholar 

  22. Porta, A., Gnecchi-Ruscone, T., Tobaldini, E., Guzzetti, S., Furlan, R., Montano, N.: Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt. J. Appl. Physiol. 103, 1143–1149 (2007)

    Article  PubMed  Google Scholar 

  23. Taylor, J.A., Eckberg, D.L.: Fundamental relations between short-term RR interval and arterial pressure oscillations in humans. Circulation. 93, 1527–1532 (1996)

    Article  CAS  PubMed  Google Scholar 

  24. Cooke, W.H., Hoag, J.B., Crossman, A.A., Kuusela, T.A., Tahvanainen, K.U.O., Eckberg, D.L.: Human response to upright tilt: a window on central autonomic integration. J. Physiol. 517, 617–628 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. London, G.M., Levenson, J.A., Safar, M.E., Simon, A.C., Guerin, A.P., Payen, D.: Hemodynamic-effects of head-down tilt in normal subjects and sustained hypertensive patients. Am. J. Phys. 245, H194–H202 (1983)

    CAS  Google Scholar 

  26. Dick, T.E., Baekey, D.M., Paton, J.F.R., Lindsey, B.G., Morris, K.F.: Cardio-respiratory coupling depends on the pons. Respir. Physiol. Neurobiol. 168, 76–85 (2009)

    Article  PubMed  Google Scholar 

  27. Porta, A., Bassani, T., Bari, V., Tobaldini, E., Takahashi, A.C.M., Catai, A.M., Montano, N.: Model-based assessment of baroreflex and cardiopulmonary couplings during graded head-up tilt. Comput. Biol. Med. 42, 298–305 (2012)

    Article  PubMed  Google Scholar 

  28. Faes, L., Nollo, G., Porta, A.: Information domain approach to the investigation of cardio-vascular, cardio-pulmonary, and vasculo-pulmonary causal couplings. Front. Physiol. 2, 1–13 (2011)

    Article  Google Scholar 

  29. De Boer, R.W., Karemaker, J.M., Strackee, J.: Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am. J. Phys. 253, H680–H689 (1987)

    Google Scholar 

  30. Barrett, A.B.: Exploration of synergistic and redundant information sharing in static and dynamical Gaussian systems. Phys. Rev. E. 91, 052802 (2015)

    Article  Google Scholar 

  31. Voss, A., Schroeder, R., Heitmann, A., Peters, A., Perz, S.: Short-term heart rate variability-influence of gender and age in healthy subjects. PLoS One. 10, e0118308 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Faes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Faes, L., Nollo, G., Porta, A. (2017). Information Decomposition: A Tool to Dissect Cardiovascular and Cardiorespiratory Complexity. In: Barbieri, R., Scilingo, E., Valenza, G. (eds) Complexity and Nonlinearity in Cardiovascular Signals. Springer, Cham. https://doi.org/10.1007/978-3-319-58709-7_3

Download citation

Publish with us

Policies and ethics