Skip to main content

Charophyceae (Charales)

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of the Protists

Abstract

The charophytes, or stoneworts, are a group of green algae with six extant genera in one family, distributed worldwide in freshwater ponds and lakes. They are among the green algal groups most closely related to land plants and exhibit a complex thallus, with multinucleate internodal cells joined at nodes comprising smaller, uninucleate cells giving rise to whorled branchlets. Two genera (Chara, Nitella) contain most of the described species, with a third (Tolypella) containing several dozen taxa. The remaining genera have one or a few species. Reproduction is oogamous, with sperm and eggs produced in separate multicellular structures. The thallus is haploid; the zygote is the only diploid cell in the life cycle, and meiosis is followed by the development of a resistant spore. Thalli and spores are often encrusted with calcium carbonate. Such spores are abundant in the fossil record of the Charales, which extends to the Upper Silurian, and many genera and families have become extinct. These algae provide important ecosystem services, for example, as colonizing species, as biological agents for producing water clarity, or as the base of the food web. Charophytes are important for the study of evolution of embryophyte development, growth meristems, and cell biophysics. As one of the green algal groups most closely related to land plants, the rich charophyte fossil record may reveal clues regarding the earliest algae that invaded the land.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen, T. F. (1888). Characeae of America. John C. Rankin, Jr., New York.

    Google Scholar 

  • Allen, T. F. (1889). Characeae. In N. L. Britton (Ed.), Catalog of plants found in New Jersey (pp. 356–357). J. L. Murphy, Trenton.

    Google Scholar 

  • Andrews, M., Davison, I. R., Andrews, M. E., & Raven, J. A. (1984). Growth of Chara hispida L. Apical growth and basal decay. Journal of Ecology, 72, 873–884.

    Article  Google Scholar 

  • Becker, B., & Marin, B. (2009). Streptophyte algae and the origin of embryophytes. Annals of Botany, 103, 999–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beilby, M. J., & Shepherd, V. A. (2006). The electrophysiology of salt tolerance in charophytes. Cryptogamie, Algologie, 27, 403–417.

    Google Scholar 

  • Berger, S., & Kaever, M. J. (1992). Dasycladales – An illustrated monograph of a fascinating algal order. Stuttgart: Thieme.

    Google Scholar 

  • Bhatnager, S. K. (1983). The concept of basic chromosome numbers in Charophyta – A review. Cryptogamie, Algologie, 4, 111–116.

    Google Scholar 

  • Blindow, I. (1988). Phosphorus toxicity in Chara. Aquatic Botany, 32, 393–395.

    Article  CAS  Google Scholar 

  • Blindow, I. (1992a). Long-term and short-term dynamics of submerged macrophytes in 2 shallow eutrophic lakes. Freshwater Biology, 28, 15–27.

    Article  Google Scholar 

  • Blindow, I. (1992b). Decline of charophytes during eutrophication: Comparison with angiosperms. Freshwater Biology, 28, 9–14.

    Article  Google Scholar 

  • Blindow, I., & Hootsmans, M. J. M. (1991). Allelopathic effects from Chara spp. on two species of unicellular green algae. In M. J. M. Hootsmans, & J. E. Vermaat (Eds.), Macrophytes, a key to understanding changes caused by eutrophication in shallow freshwater ecosystems (vol. 21, pp. 139–144). Delft: IHE Report Series.

    Google Scholar 

  • Bold, H. C., & Wynne, M. J. (1978). Introduction the algae: Structure and reproduction. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Braun, A., & Nordstedt, O. (1882). Fragmente einer Monographie der Characeen. Berlin: K. Akademie derWissenschaften.

    Google Scholar 

  • Casanova, M. (1994). Vegetative and reproductive responses of charophytes to water-level fluctuations in permanent and temporary wetlands in Australia. Marine and Freshwater Research, 45, 1409–1419.

    Article  Google Scholar 

  • Casanova, M. T. (1997). Oospore variation in three species of Chara (Charales, Chlorophyta). Phycologia, 36, 274–280.

    Article  Google Scholar 

  • Casanova, M. T. (2005). An overview of Chara L. in Australia (Characeae, Charophyta). Australian Systematic Botany, 18, 25–39.

    Article  Google Scholar 

  • Casanova, M. T. (2009). An overview of Nitella (Characeae, Charophyceae) in Australia. Australian Systematic Botany, 22, 193–218.

    Article  Google Scholar 

  • Casanova, M. T. (2011). Using water plant functional groups to investigate environmental water requirements. Freshwater Biology, 56, 2637–2652.

    Article  Google Scholar 

  • Casanova, M. T., & Brock, M. A. (1996). Can oospore germination patterns explain charophyte distribution in permanent and temporary wetlands? Aquatic Botany, 54, 297–312.

    Article  Google Scholar 

  • Casanova, M. T., & Brock, M. A. (1999a). Life histories of charophytes from permanent and temporary wetlands in eastern Australia. Australian Journal of Botany, 47, 383–397.

    Article  Google Scholar 

  • Casanova, M. T., & Brock, M. A. (1999b). Charophyte occurrence, seed banks and establishment in farm dams in New South Wales. Australian Journal of Botany, 47, 437–444.

    Article  Google Scholar 

  • Casanova, M. T., de Winton, M. D., & Clayton, J. S. (2002). Do charophytes clear turbid waters? Verhandlungen des Internationalen Verein Limnologie, 28, 1440–1443.

    Google Scholar 

  • Casanova, M. T., de Winton, M. D., Karol, K. G., & Clayton, J. S. (2007). Nitella hookeri A. Braun (Characeae, Charophyceae) in New Zealand and Australia: implications for endemism, speciation and biogeography. Charophytes, 1, 2–18.

    Google Scholar 

  • Clabeaux, B. L., & Bisson, M. A. (2009). Developmental patterns in Chara australis (Characeae, Charophyceae): Apical dominance, pH and auxin. Charophytes, 1, 68–72.

    Google Scholar 

  • Cook, M. E., Graham, L. E., & Lavin, C. A. (1998). Cytokinesis and nodal anatomy in the charophycean green alga Chara zeylanica. Protoplasma, 203, 65–74.

    Article  Google Scholar 

  • Corillion, R. (1972). Les Charophycées de France et d’Europe Occidentale (2nd ed.). Angers: Otto Koeltz Verlag.

    Google Scholar 

  • Dale, H. M. (1986). Temperature and light: The determining factors in maximum depth distribution of aquatic macrophytes in Ontario, Canada. Hydrobiologia, 133, 73–77.

    Article  Google Scholar 

  • Elger, A., Bornette, G., Barrat-Segretain, M.-H., & Amoros, C. (2004). Disturbances as a structuring factor of plant palatability in aquatic communities. Ecology, 85, 304–311.

    Article  Google Scholar 

  • Feist, M., Grambast-Fessard, N., Gurelesqun, M., Karol, K. G., Lu, H., McCourt, R. M., Wang, Q., & Zang, S. (2005). Treatise on invertebrate paleontology. Part B. Protoctista 1. Volume 1: Charophyta (Moellerinales, Sycidiales, Charales). Lawrence: The Geological Society of America, Inc. and University of Kansas.

    Google Scholar 

  • Forsberg, C. (1964). Phosphorus, a maximum factor in the growth of Characeae. Nature, 201, 517–518.

    Article  CAS  PubMed  Google Scholar 

  • Fritsch, F. E. (1948). The structure and reproduction of the algae (Vol. 1). Cambridge: Cambridge University Press.

    Google Scholar 

  • Graham, L. E. (1993). Origin of land plants. New York: Wiley.

    Google Scholar 

  • Graham, L. E., & Wilcox, L. W. (2000). Algae. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Grambast, L. (1974). Phylogeny of the Charophyta. Taxon, 23, 463–481.

    Article  Google Scholar 

  • Grant, M. C. (1990). Phylum Chlorophyta, class Charophyceae, order Charales. In L. Margulis, J. Corliss, M. Melkonian, & D. Chapman (Eds.), Handbook of Protoctista (pp. 641–648). Boston: Jones and Bartlett.

    Google Scholar 

  • Grant, M. C., & Proctor, V. W. (1972). Chara vulgaris and C. contraria: patterns of reproductive isolation for two cosmopolitan species complexes. Evolution, 26, 267–281.

    Article  Google Scholar 

  • Grant, M. C., & Proctor, V. W. (1980). Electrophoretic analysis of genetic variation in the Charophyta I. Gene duplication via polyploidy. Journal of Phycology, 16, 109–115.

    Article  Google Scholar 

  • Guerlesquin, M. (1984). Nombres chromosomiques et ploïdie chez les’ charophytes. Cryptogamie, Algologie, 5, 115–126.

    Google Scholar 

  • Hawes, I., & Schwarz, A. (1996). Epiphytes from a deep-water characean meadow in an oligotrophic New Zealand lake: Species composition, biomass and photosynthesis. Freshwater Biology, 36, 297–313.

    Article  CAS  Google Scholar 

  • Hutchinson, G. E. (1975). A treatise on limnology: Limnological botany. New York: Wiley.

    Google Scholar 

  • James, M. R., Weatherhead, M., Stanger, C., & Graynoth, E. (1998). Macro-invertebrate distribution in the littoral zone of Lake Coleridge, South Island, New Zealand: Effects of habitat stability, wind exposure and macrophytes. New Zealand Journal of Marine and Freshwater Research, 32, 287–305.

    Article  Google Scholar 

  • Karol, K. G., McCourt, R. M., Cimino, M. T., & Delwiche, C. F. (2001). The closest living relatives of land plants. Science, 294, 2351–2353.

    Article  CAS  PubMed  Google Scholar 

  • Kelman, R., Feist, M., Trewin, N. H., & Hass, H. (2004). Charophyte algae from the Rhynie chert. Transactions of the Royal Society of Edinburgh-Earth Sciences, 94, 445–455.

    Article  Google Scholar 

  • Kidston, R., & Lang, W. H. (1921). On old red sandstone plants showing structure, from the Rhynie Chert bed. Part 5. The Thallophyta occurring in the peat bed; the succession of the plants throughout a vertical selection of the bed, and the conditions of accumulation and preservation of the deposit. Transactions of the Royal Society of Edinburgh, 52, 855–902.

    Article  Google Scholar 

  • Kiss, J. Z., & Staehelin, L. A. (1993). Structural polarity in the Chara rhizoid: A reevaluation. American Journal of Botany, 80, 273–282.

    Article  CAS  PubMed  Google Scholar 

  • KuczyÅ„ska-Kippen, N. (2007). Habitat choice in rotifera communities of three shallow lakes: Impact of macrophyte substratum and season. Hydrobiologia, 593, 27–37.

    Article  Google Scholar 

  • Kufel, L., & Kufel, I. (2002). Chara beds acting as nutrient sinks in shallow lakes – A review. Aquatic Botany, 72, 249–260.

    Article  Google Scholar 

  • Lake, M. D., Hicks, B. J., Wells, R. D. S., & Dugdale, T. M. (2002). Consumption of submerged aquatic macrophytes by rudd (Scardinius erythrophthalmus L.) in New Zealand. Hydrobiologia, 470, 13–22.

    Article  Google Scholar 

  • Lewis, L. A., & McCourt, R. M. (2004). Green algae and the origin of land plants. American Journal of Botany, 91, 1535–1556.

    Article  PubMed  Google Scholar 

  • Linnaeus, C. (1753). Species plantarum, exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Holmiae Stockholm.

    Google Scholar 

  • Mann, H., Proctor, V. W., & Taylor, A. S. (1999). Toward a biogeography of North American charophytes. Australian Journal of Botany, 47, 445–458.

    Article  Google Scholar 

  • Margulis, L., Corliss, J., Melkonian, M., & Chapman, D. (1990). Handbook of protoctista. Boston: Jones and Bartlett Publishers.

    Google Scholar 

  • Martín-Closas, C. (2003). The fossil record and evolution of freshwater plants: A review. Geologica Acta, 1, 315–338.

    Google Scholar 

  • Mattox, K. R., & Stewart, K. D. (1984). Classification of the green algae: A concept based on comparative cytology. In D. E. G. Irvine & D. M. John (Eds.), Systematics of the green algae (pp. 29–72). London/Orlando: Academic.

    Google Scholar 

  • McCourt, R. M., Karol, K. G., Guerlesquin, M., & Feist, M. (1996). Phylogeny of extant genera in the family Characeae (Charales, Charophyceae) based on rbcL sequences and morphoogy. American Journal of Botany, 83, 125–131.

    Article  Google Scholar 

  • McCourt, R. M., Karol, K. G., Casanova, M. T., & Feist, M. (1999). Monophyly of genera and species of Characeae based on rbcL sequences, with special reference to Australian and European Lychnothamnus barbatus (Characeae: Charophyceae). Australian Journal of Botany, 47, 361–369.

    Article  CAS  Google Scholar 

  • McCourt, R. M., Karol, K. G., Proctor, V., & Feist, M. (2001). Molecular phylogeny of the tribe Chareae (Characeae) based on rbcL sequences. Journal of Phycology, 37, 5132–5133.

    Google Scholar 

  • McCourt, R. M., Delwiche, C. F., & Karol, K. G. (2004). Charophyte algae and land plant origins. Ecology and Evolution, 19, 661–666.

    Article  PubMed  Google Scholar 

  • McCracken, M. D., Proctor, V. W., & Hotchkiss, A. T. (1966). Attempted hybridization between monoecious and dioecious clones of Chara. American Journal of Botany, 53, 937–940.

    Article  Google Scholar 

  • Meiers, S. T., Proctor, V. W., & Chapman, R. L. (1999). Phylogeny and biogeography of Chara (Charophyta) inferred from 18S rDNA sequences. Australian Journal of Botany, 47, 347–360.

    Article  CAS  Google Scholar 

  • Pakdel, F. M., Sim, L., Beardall, J., & Davis, J. (2013). Alleolpathic inhibition of microalgae by the freshwater stonewort Chara australis and a submerged angiosperm Potamogeton crispus. Aquatic Botany, 110, 24–30. Available on line so far.

    Article  Google Scholar 

  • Pelechaty, M., GÄ…bka, M., Sugier, P., Pukacz, A., Chmiel, S., Ciecierska, H., Kolada, A., & Owsianny, P. M. (2010). Lychnothamnus barbatus in Poland: Habitats and associations. Charophytes, 2, 13–18.

    Google Scholar 

  • Pickett-Heaps, J. D. (1975). Green algae. Sunderland: Sinauer Associates.

    Google Scholar 

  • Porter, J. L. (2007). Contrasting emergence patterns of Lamprothamnium macropogon (Characeae, Charophyceae) and Ruppia tuberosa (Potamogetonaceae) from arid-zone wetlands in Australia. Charophytes, 1, 19–27.

    Google Scholar 

  • Proctor, V. W. (1975). The nature of charophyte species. Phycologia, 14, 97–113.

    Article  Google Scholar 

  • Proctor, V. W. (1980). Historical biogeography of Chara (Charophyta): An appraisal of the Braun-Wood classification plus a falsifiable alternative for future consideration. Journal of Phycology, 16, 218–233.

    Article  Google Scholar 

  • Proctor, V. W. (1999). Charophytivory, Playas y Papalotes, a local paradigm of global relevance. Australian Journal of Botany, 47, 399–406.

    Article  Google Scholar 

  • Raven, J. A., & Brownlee, C. (2001). Understanding membrane function. Journal of Phycology, 37, 960–967.

    Article  Google Scholar 

  • Raven, J. A., Smith, F. A., & Glidewell, S. M. (1979). Photosynthetic capacities and biological strategies of giant-celled and small-celled macro-algae. New Phytologist, 83, 299–309.

    Article  CAS  Google Scholar 

  • Renzaglia, K. S., & Garbary, D. J. (2001). Motile gametes of land plants: Diversity, development, and evolution. Critical Reviews in Plant Sciences, 20, 107–213.

    Article  Google Scholar 

  • Rodrigo, M. A., & Alonso-Guillén, J. L. (2008). In situ nitrate uptake rates in two Chara species. Charophytes, 1, 49–54.

    Google Scholar 

  • Sakayama, H., Nozaki, H., Kasaki, H., & Hara, Y. (2002). Taxonomic re-examination of Nitella (Charales, Charophyceae) from Japan, based on microscopical studies of oospore wall ornamentation and rbcL gene sequences. Phycologia, 41, 397–408.

    Article  Google Scholar 

  • Sakayama, H., Hara, Y., & Nozaki, H. (2004a). Taxonomic re-examination of six species of Nitella (Charales, Charophyceae) from Asia, and phylogenetic relationships within the genus based on rbcL and atpB gene sequences. Phycologia, 43, 91–104.

    Google Scholar 

  • Sakayama, H., Hara, Y., Arai, S., Sato, H., & Nozaki, H. (2004b). Phylogenetic analyses of Nitella subgenus Tieffallenia (Charales, Charophyceae) using nuclear ribosomal DNA internal transcribed spacer sequences. Phycologia, 43, 672–681.

    Google Scholar 

  • Sakayama, H., Fumie, K., Nozaki, H., Shogo, A., & Watanabe, M. M. (2005a). Chloroplast haplotype variation and phylogenetic relationships among the East Asian and Oseanian populations of Chara fibrosa (Charales, Charophyceae). Journal of Plant Research, 118, 48.

    Google Scholar 

  • Sakayama, H., Miyaji, K., Nagumo, T., Kato, M., Hara, Y., & Nozaki, H. (2005b). Taxonomic reexamination of 17 species of Nitella subgenus Tieffallenia (Charales, Charophyceae) based on internal morphology of the oospore wall and multiple DNA marker sequences. Journal of Phycology, 41, 195–211.

    Google Scholar 

  • Schmieder, K., Werner, S., & Bauer, H.-G. (2006). Submersed macrophytes as a food source for wintering waterbirds at Lake Constance. Aquatic Botany, 84, 245–250.

    Article  Google Scholar 

  • Schwarz, A.-M., Hawes, I., & Howard-Williams, C. (1999). Mechanisms underlying the decline and recovery of a characean community in fluctuating light in a large oligotrophic lake. Australian Journal of Botany, 47, 325–336.

    Article  Google Scholar 

  • Schwarz, A. M., Howard-Williams, C., & Clayton, J. (2000). Analysis of relationships between maximum depth limits of aquatic plants and underwater light in 63 New Zealand lakes. New Zealand Journal of Marine and Freshwater Research, 34, 157–174.

    Article  Google Scholar 

  • Shepherd, V. A., Beilby, M. J., & Heslop, D. J. (1999). Ecophysiology of the hypotonic response in the salt-tolerant charophyte alga Lamprothamnium papulosum. Plant Cell and Environment, 22, 333–346.

    Article  Google Scholar 

  • Siong, K., Asaeda, T., Fujino, T., & Redden, A. (2006). Difference characteristics of phosphorus in Chara and two submerged angiosperm species: Implications for phosphorus nutrient cycling in an aquatic ecosystem. Wetlands Ecology and Management, 14, 505–510.

    Article  CAS  Google Scholar 

  • Smith, G. M. (1950). Freshwater algae of the United States. New York/Toronto/London: McGraw Hill Book Company.

    Google Scholar 

  • Soulié-Märsche, I. (1999). Extant gyrogonite populations of Chara zeylanica and Chara haitensis: Implications for taxonomy and palaeoecology. Australian Journal of Botany, 47, 371–382.

    Article  Google Scholar 

  • Soulié-Märsche, I. (2008). Charophytes, indicators for low salinity phases in North African sebkhet. Journal of African Earth Sciences, 51, 69–76.

    Article  Google Scholar 

  • Stross, R. G. (1979). Density and boundary regulations of the Nitella meadow in Lake George, New York. Aquatic Botany, 6, 285–300.

    Article  Google Scholar 

  • Stross, R. G., Huvane, J., & Sokol, R. C. (1988). Internal structure of deep-dwelling Nitella meadows. Aquatic Botany, 29, 329–345.

    Article  Google Scholar 

  • Taylor, T. N., Taylor, E. L., & Krings, M. (2009). Paleobotany: The biology and evolution of fossil plants. Amsterdam: Elsevier/Academic.

    Google Scholar 

  • Tazawa, M., & Shimmen, T. (2001). How characean cells have contributed to the progress of plant membrane biophysics. Australian Journal of Plant Physiology, 28, 523–539.

    CAS  Google Scholar 

  • Tazawa, M., Shimmen, T., & Mimura, T. (1987). Membrane control in the Characeae. Annual Review of Plant Physiology and Plant Molecular Biology, 38, 95–117.

    Article  CAS  Google Scholar 

  • Turmel, M., Otis, C., & Lemieux, C. (2006). The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Molecular Biology and Evolution, 23, 1324–1338.

    Article  CAS  PubMed  Google Scholar 

  • van den Berg, M. S., Scheffer, M., Coops, H., & Simons, J. (1998). The role of characean algae in the management of eutrophic shallow lakes. Journal of Phycology, 34, 750–756.

    Article  Google Scholar 

  • Watanabe, M. M. (2005). Cultures as a means of protecting biological resources: ex situ conservation of threatened algal species. In R. A. Anderson (Ed.), Algal culturing techniques (pp. 419–428). New York: Elsevier Academic.

    Google Scholar 

  • Wodniok, S., Brinkmann, H., Glockner, G., Heidel, A., Philippe, H., Melkonian, M., & Becker, B. (2011). Origin of land plants: Do conjugating green algae hold the key? BMC Evolutionary Biology, 11, 104.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wood, R. D., & Imahori, K. (1965). A revision of the characeae. Weinheim: Verlag von J. Cramer.

    Google Scholar 

  • Yamamoto, K., Shimada, K., Iyo, K., Hamada, S., Ishijima, A., Takayoshi, T., & Tazawa, M. (2006). Chara myosin and the energy of cytoplasmic streaming. Plant & Cell Physiology, 47, 1427–1431.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Science Foundation, grants DEB 1020948 and 1036478, for support in writing this chapter. We sincerely thank Dr. Michelle T. Casanova, who reviewed the manuscript and provided several figures. This material is based in part on work performed while R. M. McCourt worked at the U.S. National Science Foundation. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. McCourt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

McCourt, R.M., Karol, K.G., Hall, J.D., Casanova, M.T., Grant, M.C. (2017). Charophyceae (Charales). In: Archibald, J., et al. Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-32669-6_40-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32669-6_40-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32669-6

  • Online ISBN: 978-3-319-32669-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Charophyceae (Charales)
    Published:
    13 February 2017

    DOI: https://doi.org/10.1007/978-3-319-32669-6_40-2

  2. Original

    Charophyceae (Charales)
    Published:
    13 July 2016

    DOI: https://doi.org/10.1007/978-3-319-32669-6_40-1