Skip to main content

Atomistic Simulations of Tunneling FETs

  • Chapter
  • First Online:
Tunneling Field Effect Transistor Technology

Abstract

With continuous scaling of semiconductor devices , the number of atoms in transistors becomes countable. Various effects related to the device atomic structure, such as random dopants, edge roughness, and channel-oxide interface, have great impact on device performance. Therefore, it is valuable to study material electronic properties and device transport characteristics at the atomic level. In this chapter, we review the atomistic modeling methods of density functional theory (DFT) and tight-binding (TB) model within the Keldysh non-equilibrium Green’s function (NEGF) framework. To investigate impurity scattering in devices, the framework of non-equilibrium vertex correction (NVC) with NEGF–DFT is reviewed. The NEGF–DFT–NVC approach can give the statistic transport information of nanodevices with atomic disorder and is applied to study disorder effects in graphene TFETs. Due to the diffusive impurity scattering, the band-to-band tunneling current is substantially reduced in graphene TFETs with atomic disorder. At last, atomistic simulations of monolayer transition metal dichalcogenide (TMDC) TFETs are carried out by using the NEGF–TB method. It is revealed that the orientation-dependent transport is determined by conduction sub-bands and the atomic structure along the transport direction.

Fei Liu and Qing Shi contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Lundstrom, Fundamentals of Carrier Transport (Addison-Wesley Publishing Company, Reading, MA, 1990), vol. 10

    Google Scholar 

  2. A. Asenov, IEEE Trans. Electron. Devices 45, 2505 (1998)

    Article  Google Scholar 

  3. A. Asenov, A.R. Brown, J.H. Davies, S. Kaya, G. Slavcheva, IEEE Trans. Electron. Devices 50, 1837 (2003)

    Article  Google Scholar 

  4. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  5. P.C. Martin, J. Schwinger, Theory of many-particle systems. I. Phys. Rev. 115, 1342 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Schwinger, J. Math. Phys. 2, 407 (1961)

    Article  MathSciNet  Google Scholar 

  7. L.V. Keldysh, Sov. Phys. JETP 20, 1018 (1965)

    MathSciNet  Google Scholar 

  8. L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics (Benjamin/Cummings, 1962)

    Google Scholar 

  9. C. Caroli, R. Combescot, P. Nozieres, D. Saint-James, J. Phys. C: Solid St. Phys. 4, 916 (1971)

    Article  Google Scholar 

  10. Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)

    Article  Google Scholar 

  11. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001)

    Article  Google Scholar 

  12. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 121104 (2001)

    Article  Google Scholar 

  13. Z. Ren, R. Venugopal, S. Datta, M.S. Lundstrom, D. Jovanovic, J.G. Fossum, IEDM Tech. Dig. 715 (2000)

    Google Scholar 

  14. Z. Ren, R. Venugopal, S. Datta, M.S. Lundstrom, IEDM Tech. Dig. 5.4.1 (2001)

    Google Scholar 

  15. J. Guo, S. Datta, M. Lundstrom, IEEE Trans. Electron. Devices 51, 172 (2004)

    Article  Google Scholar 

  16. J. Guo, S. Datta, M.P. Anantram, M. Lundstrom, J. Comput. Electron. 3, 373 (2004)

    Article  Google Scholar 

  17. Y. Zheng, C. Rivas, R. Lake, K. Alam, T. Boykin, G. Klimeck, IEEE Trans. Electron. Devices 52, 1097 (2005)

    Article  Google Scholar 

  18. M. Luisier, A. Schenk, W. Fichtner, G. Klimeck, Phys. Rev. B 74, 205323 (2006)

    Article  Google Scholar 

  19. Y. Ouyang, Y. Yoon, J. Guo, IEEE Trans. Electron. Devices 54, 2223 (2007)

    Article  Google Scholar 

  20. Y. Yoon, K. Ganapathi, S. Salahuddin, Nano. Lett. 11, 3768 (2011)

    Article  Google Scholar 

  21. F. Liu, Y. Wang, X. Liu, J. Wang, H. Guo, IEEE Trans. Electron. Devices 61, 3871 (2014)

    Article  Google Scholar 

  22. A.C. Seabaugh, Q. Zhang, Proc. IEEE 98, 2095 (2010)

    Article  Google Scholar 

  23. A.M. Ionescu, H. Riel, Nature 479, 329 (2011)

    Article  Google Scholar 

  24. M. Luisier, G. Klimeck, IEEE Electr. Dev. Lett. 30, 602 (2009)

    Article  Google Scholar 

  25. M. Luisier, G. Klimeck, J. Appl. Phys. 107, 084507 (2010)

    Article  Google Scholar 

  26. P. Zhao, J. Chauhan, J. Guo, Nano. Lett. 9, 684 (2009)

    Article  Google Scholar 

  27. S.K. Chin, D. Seah, K.T. Lam, G.S. Samudra, G. Liang, IEEE Trans. Electron. Devices 57, 3144 (2010)

    Article  Google Scholar 

  28. A. Szabo, R. Rhyner, M. Luisier, Proc. IEEE IEDM 30.4.1 (2014)

    Google Scholar 

  29. F. Liu, J. Wang, H. Guo, Nanotechnology 26, 175201 (2015)

    Article  MathSciNet  Google Scholar 

  30. H. Ilatikhameneh, Y. Tan, B. Novakovic, G. Klimeck, R. Rahman, J. Appenzeller, IEEE. J. Exploratory Solid-State Comput. Devices Circuits 1, 12 (2015)

    Article  Google Scholar 

  31. F. Liu, J. Wang, H. Guo, IEEE Trans. Elec. Dev. 63, 311 (2016)

    Article  Google Scholar 

  32. M. Born, R. Oppenheimer, Zur Quantentheorie der Molekeln. Ann. Phys. 389, 457 (1927)

    Google Scholar 

  33. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  MathSciNet  Google Scholar 

  34. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  Google Scholar 

  35. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  Google Scholar 

  36. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Google Scholar 

  37. H.L. Skriver, The LMTO Method (Springer, Berlin, 1984)

    Book  Google Scholar 

  38. I. Turek, Electronic Structure of Disorder Alloys Surfaces and Interfaces (Kluwer Academic Publishers, Boston, 1997)

    Book  Google Scholar 

  39. O.K. Anderson, Phys. Rev. Lett. 53, 2571 (1984)

    Article  Google Scholar 

  40. O.K. Anderson, Phys. Rev. B 34, 5253 (1986)

    Article  Google Scholar 

  41. P.C. Slater, G.F. Koster, Phys. Rev. 94, 1498 (1954)

    Article  Google Scholar 

  42. P.R. Wallace, The band theory of graphite. Phys. Rev. 71, 622–634 (1947)

    Google Scholar 

  43. T.B. Boykin, G. Klimeck, F. Oyafuso, Phys. Rev. B 69, 115201 (2004)

    Article  Google Scholar 

  44. R. Landauer, IBM J. Rev. Dev. 1, 223 (1957)

    Article  MathSciNet  Google Scholar 

  45. M. Buttiker, Y. Imry, R. Landauer, S. Pinhas, Phys. Rev. B 31, 6207 (1985)

    Article  Google Scholar 

  46. M.P. Lopez Sancho, J.M. Lopez Sancho, J. Rubio, J. Phys. F. 15, 851 (1985)

    Google Scholar 

  47. J. Kudrnovský, I. Drchal, Phys. Rev. B 41, 7515 (1990)

    Article  Google Scholar 

  48. J.S. Chawla, F. Zahid, H. Guo, D. Gall, Appl. Phys. Lett. 97, 132106 (2010)

    Article  Google Scholar 

  49. F. Zahid, Y. Ke, D. Gall, H. Guo, Phys. Rev. B 81, 045406 (2010)

    Article  Google Scholar 

  50. B. Velický, S. Kirkpatrick, H. Ehrenreich, Phys. Rev. 175, 747 (1968)

    Article  Google Scholar 

  51. Y. Zhu, L. Liu, H. Guo, Phys. Rev. B 88, 205415 (2013)

    Article  Google Scholar 

  52. Y. Zhu, L. Liu, H. Guo, Phys. Rev. B 88, 085420 (2013)

    Article  Google Scholar 

  53. Q. Shi, L. Zhang, Y. Zhu, L. Liu, M. Chan, H. Guo, Proc. IEEE IEDM 30.6.1 (2014)

    Google Scholar 

  54. H. Fang, M. Tosun, G. Seol, T.C. Chang, K. Takei, J. Guo, A. Javey, Nano. Lett. 13, 1991 (2013)

    Article  Google Scholar 

  55. N.H. Pour, Y. Anugrah, S. Wu, X. Xu, S.J. Koester, DRC Tech. Dig. 101 (2013)

    Google Scholar 

  56. Q. Yu, L.A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T.F. Chung, P. Peng, N.P. Guisinger, E.A. Stach, J. Bao, S. Pei, Y.P. Chen, Nat. Matter 10, 443 (2011)

    Article  Google Scholar 

  57. A. Asenov, F. Adamu-Lema, X. Wang, S.M. Amoroso, IEEE Trans. Elec. Dev. 61, 2745 (2014)

    Article  Google Scholar 

  58. T.B. Boykin, M. Luisier, A. Schenk, N. Kharche, G. Klimeck, IEEE Trans. Nano. 6, 43 (2007)

    Article  Google Scholar 

  59. Y. Ke, K. Xia, H. Guo, Phys. Rev. Lett. 105, 236801 (2010)

    Article  Google Scholar 

  60. J.S. Chawla, F. Zahid, H. Guo, D. Gall, Appl. Phys. Lett. 97, 132106 (2010)

    Article  Google Scholar 

  61. J. Maassen, H. Guo, Phys. Rev. Lett. 109, 266803 (2012)

    Article  Google Scholar 

  62. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, P.M. Ajayan, Nat. Mater. 9, 430 (2010)

    Article  Google Scholar 

  63. NanoAcademic, Nanodsim Manual (2013)

    Google Scholar 

  64. F. Liu, Y. Wang, X. Liu, J. Wang, H. Guo, IEEE Electron. Device Lett. 36, 1091 (2015)

    Article  Google Scholar 

  65. K. Lam, X. Cao, J. Guo, IEEE Electron. Device Lett. 34, 1331 (2013)

    Article  Google Scholar 

  66. N. Ma, D. Jena, Appl. Phys. Lett. 102, 132102 (2013)

    Article  Google Scholar 

  67. J.W. Chang, C. Hobbs, Appl. Phys. Lett. 106, 083509 (2015)

    Article  Google Scholar 

  68. F. Liu, Q. Shi, J. Wang, H. Guo, Appl. Phys. Lett. 107, 203501 (2015)

    Article  Google Scholar 

  69. D. Akinwande, N. Petrone, J. Hone, Nat. Commun. 5, 5678 (2014)

    Article  Google Scholar 

  70. S. Agarwal, E. Yablonovitch, Proc. 69th Annu. DRC, 199 (2011)

    Google Scholar 

  71. X.W. Jiang, J. Gong, N. Xu, S.S. Li, L.W. Wang, Appl. Phys. Lett. 104, 023512 (2014)

    Google Scholar 

  72. D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang, Y. Gong, S. Kraemer, M.P. Ajayan, K. Banerjee, Nature 526, 91 (2015)

    Google Scholar 

  73. S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  74. F. Liu, Y. Wang, X. Liu, J. Wang, H. Guo, IEEE Electron. Device Lett. 36, 1091 (2015)

    Article  Google Scholar 

  75. R.F. Pierret, Semiconductor Device Fundamentals (Addison-Wesley, Boston, 1996)

    Google Scholar 

  76. K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, Y. Arimoto, IEEE Trans. Electron. Devices 40, 2326 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the University Grant Council (Contract No. AoE/P-04/08) of the Government of HKSAR, National Natural Science Foundation of China with No. 11374246 (J. Wang), and NSERC of Canada (H. Guo). We thank CLUMEQ, CalcuQuebec and Compute Canada for computation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, F., Shi, Q., Wang, J., Guo, H. (2016). Atomistic Simulations of Tunneling FETs. In: Zhang, L., Chan, M. (eds) Tunneling Field Effect Transistor Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-31653-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31653-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31651-2

  • Online ISBN: 978-3-319-31653-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics