Skip to main content

Exposure to Crystal Violet, Its Toxic, Genotoxic and Carcinogenic Effects on Environment and Its Degradation and Detoxification for Environmental Safety

  • Chapter
Book cover Reviews of Environmental Contamination and Toxicology Volume 237

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 237))

Abstract

Crystal Violet (CV), a triphenylmethane dye, has been extensively used in human and veterinary medicine as a biological stain, as a textile dye in textile processing industries and also used to provide a deep violet color to paints and printing ink. CV is also used as a mutagenic and bacteriostatic agent in medical solutions and antimicrobial agent to prevent the fungal growth in poultry feed. Inspite of its many uses, CV has been reported as a recalcitrant dye molecule that persists in environment for a long period of time and pose toxic effects. It acts as a mitotic poison, potent carcinogen and a potent clastogene promoting tumor growth in some species of fish. Thus, CV is regarded as a biohazard substance. Although, there are several physico-chemical methods such as adsorption, coagulation and ion-pair extraction reported for the removal of CV, but these methods are insufficient for the complete removal of CV from industrial wastewaters and also produce large quantity of sludge containing secondary pollutants. However, biological methods are regarded as cost-effective and eco-friendly for the treatment of industrial wastewaters, but these methods also have certain limitations. Therefore, there is an urgent need to develop such eco-friendly and cost-effective biological treatment methods, which can effectively remove the dye from industrial wastewaters for the safety of environment, as well as human and animal health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams EQ, Rosenstein L (1914) The color and ionization of crystal-violet. J Am Chem Soc 36(7):1452–1473

    Article  CAS  Google Scholar 

  • Aguilar MI, Sáez J, Llorens M, Soler A, Ortuno JF, Meseguer V, Fuente A (2005) Improvement of coagulation-flocculation process using anionic polyacryl amide as coagulant aid. Chemosphere 58:47–56

    Article  CAS  Google Scholar 

  • Ahmad R (2009) Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). J Hazard Mater 171:767–773

    Article  CAS  Google Scholar 

  • Ahmad R, Kumar R (2010a) Kinetic and thermodynamic studies of brilliant green adsorption onto activated carbon/iron oxide nanocomposite. J Korean Chem Soc 54(1):125–130

    Article  CAS  Google Scholar 

  • Ahmad R, Kumar R (2010b) Conducting polyaniline/iron oxide composite: a novel adsorbent for the removal of amido black 10 B. J Chem Eng Data 55(9):3489–3493

    Article  CAS  Google Scholar 

  • Ahmad R, Kumar R (2010c) Adsorptive removal of congo red dye from aqueous solution using bale shell carbon. Appl Surf Sci 257(5):1628–1633

    Article  CAS  Google Scholar 

  • Ahmad R, Kumar R (2011) Adsorption of amaranth dyes onto alumina reinforced polystyrene. Clean Soil Air Water 39(1):74–82

    Article  CAS  Google Scholar 

  • Ahmad R, Mondal PK (2009) Application of acid treated almond peel for removal and recovery of brilliant green from industrial wastewater by column operation. Sep Sci Technol 44(7):1638–1655

    Article  CAS  Google Scholar 

  • Ahmad R, Mondal PK (2010) Application of modified water nut carbon as a sorbent in congo red and malachite green dye contaminated wastewater remediation. Sep Sci Technol 45:394–403

    Article  CAS  Google Scholar 

  • Ahmad R, Mondal PK (2012a) Adsorption and photodegradation of methylene blue by using PAni/TiO2 nanocomposite. J Dispers Sci Technol 33(3):380–386

    Article  CAS  Google Scholar 

  • Ahmad R, Mondal PK (2012b) Bioremediation of p-nitrophenol containing wastewater by aerobic granule. J Environ Eng Manag 13(3):493–498

    Google Scholar 

  • Ahmad R, Mondal PK, Usmani SQ (2010) Hybrid UASFB-aerobic bioreactor for biodegradation of acid yellow-36 in wastewater. Bioresour Technol 101(10):3787–3790

    Article  CAS  Google Scholar 

  • Ajao AT, Adebayo GB, Yakubu SE (2011) Bioremediation of textile industrial effluent using mixed culture of Pseudomonas aeruginosa and Bacillus subtilis immobilized on agar-agar in a bioreactor. J Microbiol Biotechnol Res 1:50–56

    CAS  Google Scholar 

  • Akar ST, Ozcan AS, Akar T, Ozcan A, Kaynak Z (2009) Biosorption of a reactive textile dye from aqueous solutions utilizing an agro-waste. Desalination 249:757–761

    Article  CAS  Google Scholar 

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026

    Article  CAS  Google Scholar 

  • Amini M, Younesi H (2009) Biosorption of Cd(II), Ni(II) and Pb(II) from aqueous solution by dried biomass of Aspergillus niger. Application of response surface methodology to the optimization of process parameters. Clean 37:776–786

    CAS  Google Scholar 

  • Amini M, Younesi H, Bahramifar N, Akbar A, Lorestani Z, Ghorbani F, Daneshi A, Sharifzadeh M (2008) Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. J Hazard Mater 154:694–702

    Article  CAS  Google Scholar 

  • Aplin R, Wait TD (2000) Comparison of three advanced oxidation processes for degradation of textile dyes. Water Sci Technol 42:345–354

    CAS  Google Scholar 

  • Assadi MM, Maryam M, Taher SN, Noohi A, Shahamat M, Levin M (2003) Biosorption of Baftkar textile effluent. Indian J Exp Biol 41:900–905

    Google Scholar 

  • Au W, Pathak S, Colie CL, Hsu TC (1978) Cytogenetic toxicity of gentian violet and crystal violet on mammalian cells in vitro. Mutat Res 58(2-3):269–276

    Article  CAS  Google Scholar 

  • Azargohar R, Dalai AK (2005) Production of activated carbon from Luscar char: experimental and modeling studies. Micropor Mesopor Mater 85:219–225

    Article  CAS  Google Scholar 

  • Azmi W, Banerjee UC (2001) Biological decolorization of crystal violet by a newly isolated Bacillus sp. and microbial assessment of toxicity of untreated and treated dye. Scientia Iranica 8(3):171–178

    Google Scholar 

  • Azmi W, Sani RK, Banerjee UC (1998) Biodegradation of triphenylmethane dyes. Enzyme Microb Technol 22(3):185–191

    Article  CAS  Google Scholar 

  • Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dye-containing effluxents: a review. Biores Technol 58:217–227

    Article  CAS  Google Scholar 

  • Banat IM, McMullan G, Meehan C, Kirby N, Nigam P, Smyth WF, Marchant R (1999) Microbial decolorization of textile dyes present in textile industries effluent. In: Proceedings of the industrial waste technical conference, Indianapolis, IN, pp 1–16

    Google Scholar 

  • Bansode RR, Losso JN, Marshall WE, Rao RM, Portier RJ (2003) Adsorption of metal ions by pecan shell-based granular activated carbons. Biores Technol 89:115–119

    Article  CAS  Google Scholar 

  • Beekeepers Y (2000) Arising from reactive dyes in textile industry color fenton process remedy with, ITU Institute of Science, M.Sc., Istanbul

    Google Scholar 

  • Bizuneh A (2012) Textile effluent treatment & decolorization techniques. Chem Bulg J Sci Edu 21:434–456

    Google Scholar 

  • Bonney V (1981) Browning CH: sterilization of the skin and other surfaces by a mixture of crystal violet and brilliant green. Br Med J 1:562–563

    Article  Google Scholar 

  • Bumpus JA, Brock BJ (1988) Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54:1143–1150

    CAS  Google Scholar 

  • Camarero S, Ibarra D, Martinez M, Martinez AT (2005) Lignin derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol 71:1775–1784

    Article  CAS  Google Scholar 

  • Carneiro PA, Osugi ME, Fugivara CS, Boralle N, Furlan M, Zanoni MV (2005) Evaluation of different electrochemical methods on the oxidation and degradation of Reactive Blue 4 in aqueous solution. Chemosphere 59:431–439

    Article  CAS  Google Scholar 

  • Caro H, Kern A (1883) Manufacture of dye-stuff.

    Google Scholar 

  • Chakraborty S, Purkait MK, DasGupta S, De S, Basu JK (2003) Nanofiltration of textile plant effluent for color removal and reduction in COD. Sep Purif Technol 31:141–151

    Article  CAS  Google Scholar 

  • Chakraborty S, Chowdhury S, Saha PD (2012a) Adsorption of crystal violet from aqueous solution onto sugarcane bagasse: central composite design for optimization of process variables. J Water Reuse Desal 2:55–65

    Article  CAS  Google Scholar 

  • Chakraborty S, Chowdhury S, Saha PD (2012b) Fish (Labeo rohita) scales as a new biosorbent for removal of textile dyes from aqueous solutions. J Water Reuse Desal 2:175–184

    Article  CAS  Google Scholar 

  • Chakraborty S, Chowdhury S, Saha PD (2012c) Batch removal of crystal violet from aqueous solution by H2SO4 modified sugarcane bagasse: equilibrium, kinetic, and thermodynamic profile. Sep Sci Technol 47:1898–1905

    Article  CAS  Google Scholar 

  • Chakraborty S, Chowdhury S, Saha PD (2012d) Biosorption of hazardous textile dyes from aqueous solutions by hen feathers: batch and column studies. Korean J Chem Eng 29:1567–1576

    Article  CAS  Google Scholar 

  • Chakraborty S, Chowdhury S, Saha PD (2013) Artificial neural network (ANN) modelling of dynamic adsorption of crystal violet from aqueous solution using citric-acid modified rice (Oryza sativa) straw as adsorbent. Clean Technol Environ Policy 15:255–264

    Article  CAS  Google Scholar 

  • Charaborty S, Chowdhury S, Saha PS (2011) Adsorption of crystal violet from aqueous solution onto NaOH-modified rice husk. Carbohydr Polym 86:1533–1541

    Article  CAS  Google Scholar 

  • Chen CC, Liao HJ, Cheng CY, Yen CY, Chung YC (2007) Biodegradation of crystal violet by Pseudomonas putida. Biotechnol Lett 29(3):391–396

    Article  CAS  Google Scholar 

  • Cheriaa J, Khaireddine M, Rouabhia M, Bakhrouf A (2012) Removal of triphenylmethane dyes by bacterial consortium. Scientific World Journal 9

    Google Scholar 

  • Cho BP, Yang T, Blankenship LR, Moody JD, Churchwell M, Bebland FA, Culp SC (2003) Synthesis and characterization of N-demethylated metabolites of malachite green and leuco malachite green. Chem Res Toxicol 16:285–294

    Article  CAS  Google Scholar 

  • Chowdhury S, Saha P (2010) Sea shell powder as a new adsorbent to remove Basic Green 4 (Malachite Green) from aqueous solutions: equilirium, kinetic and thermodynamic studies. Chem Eng J 164:168–177

    Article  CAS  Google Scholar 

  • Chowdhury S, Chakraborty S, Saha PD (2013a) Removal of crystal violet from aqueous solution by adsorption onto eggshells: equilibrium, kinetics, thermodynamics and artificial neural network modeling. Waste Biomass Valorization 4:655–664

    Article  CAS  Google Scholar 

  • Chowdhury S, Chakraborty S, Saha PD (2013b) Adsorption of crystal violet from aqueous solution by citric acid modified rice straw: equilibrium, kinetics, and thermodynamics. Sep Sci Technol 48:1348–1399

    Article  CAS  Google Scholar 

  • Chowdhury S, Chakraborty S, Saha PD (2013c) Response surface optimization of a dynamic dye adsorption process: a case study of crystal violet adsorption onto NaOH-modified rice husk. Environ Sci Pollut Res 20:1698–1705

    Article  CAS  Google Scholar 

  • Chu W, Ma CW (2000) Quantitative prediction of direct and indirect dye ozonation kinetics. Water Res 34:3153–3160

    Article  CAS  Google Scholar 

  • Claus H, Faber G, Konig H (2002) Redox mediated decolorization of synthetic dyes by fungal laccases. Appl Microbial Biotechnol 59:672–678

    Article  CAS  Google Scholar 

  • Cowley ID, Wase DAJ (1981) Anaerobic digestion of farm wastes; a review – part 1. Process Biochem 28–33

    Google Scholar 

  • Crites R, Tchobanoglous G (1998) Small and decentralized wastewater management systems. McGraw-Hill, New York, NY, pp 527–558

    Google Scholar 

  • Cunningham WP, Siago BW (2001) Environment science global concern. McGraw Hill, New York, NY, pp 267–269

    Google Scholar 

  • Daneshvar N, Khataee AR, Rasoulifard MH, Pourhassan M (2006) Biodegradation of dye solution containing malachite green: optimization of effective parameters using Taguchi method. J Hazard Mat 143:214–219

    Article  CAS  Google Scholar 

  • Daneshvar N, Ayazloo M, Khataee AR, Pourhassan M (2007) Biological decolorization of dye solution containing Malachite Green by Microalgae Cosmarium sp. Biores Technol 98:1176–1182

    Article  CAS  Google Scholar 

  • Das SS, Dey S, Bhattacharyya BC (1995) Dye decolorization in a column bioreactor using the wood-degrading fungus Phanerochaete chrysosporium. Ind Chem Eng 37:176–180

    CAS  Google Scholar 

  • Diamante C, Bergfeld WF, Belsito DV, Klaassen CD, Marks JG Jr, Shank TJ, Snyder PW, Alan Andersen F (2009) Final report on the safety assessment of Basic Violet 1, Basic Violet 3 and Basic Violet 4. Int J Toxicol 28:193–204

    Article  CAS  Google Scholar 

  • US Food and Drug Administration (2009) Accessed 18 Aug 2010

    Google Scholar 

  • Fan HJ, Huang ST, Chung WH, Jan JL, Lin WY, Chen CC (2009) Degradation pathways of crystal violet by fenton and fenton-like systems: condition optimization and intermediate separation and identification. J Hazard Mat 171:1032–1044

    Article  CAS  Google Scholar 

  • Ferreira VS, Magalhaes DB, King SH, De Silva JG, Bon EP (2000) N-Demethylation of methylene blue by lignin peroxidase from Phanerochaete chrysosporium. Appl Biochem Biotechnol 84:255–265

    Article  Google Scholar 

  • Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971

    Article  CAS  Google Scholar 

  • Franciscon E, Zille A, Dias GF, Ragaanin De Menezes C, Durrant LR, Cavaco-Paulo A (2009) Biodegradation of textile azo dyes by a facultative staphylococcus Arlettae strain VN-11 using a sequential microaerophilic/aerobic process. Int Biodeter Biodegr 63:280–288

    Article  CAS  Google Scholar 

  • Gaehr F, Hermanutz F, Oppermann W (1994) Ozonation an important technique to comply with new German laws for textile wastewater treatment. Water Sci Technol 30:255–263

    CAS  Google Scholar 

  • Gessner T, Mayer U (2002) Triarylmethane and diarylmethane dyes. Ullmann’s encyclopedia of industrial chemistry, 6th edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Gill PK, Arora DS, Chander M (2002) Biodecolorization of azo and triphenylmethane dyes by Dacoits squalens and Phlebia sp. Ind J Microbiol Biotechnol 28:201–203

    Article  CAS  Google Scholar 

  • Gogate PR, Pandit AB (2004) Reviews of imperative technologies for wastewater treatment. I: oxidation technologies at ambient conditions. Adv Environ Res 8:501–551

    Article  CAS  Google Scholar 

  • Golob V, Ojstrsek A (2005) Removal of vat and disperse dyes from residual pad liquors. Dyes Pigments 64:57–61

    Article  CAS  Google Scholar 

  • Gosavi VD, Sharma S (2014) A general review on various treatment methods for textile wastewater. J Environ Sci Comput Sci Eng Technol 3:29–39

    Google Scholar 

  • Gregory P (1993) Dyes and dye intermediates. In: Kroschwitz JI (ed) Encyclopedia of chemical technology. Wiley, New York, NY

    Google Scholar 

  • Hao O, Kim H, Chiang PC (2000) Decolorization of wastewater. Crit Rev Environ Sci Technol 30:449–505

    Article  CAS  Google Scholar 

  • Hashimoto T, Ohori M, Kashima T, Yamamoto H, Tachibana M (2013) Chemical cystitis due to crystal violet dye: a case report. J Med Case Rep 7:145

    Article  Google Scholar 

  • Henderson AL, Schmitt TC, Heinze TM, Cerniglia CE (1997) Reduction of malachite green to leucomalachite green by intestinal bacteria. Appl Environ Microbiol 63:4099–4101

    CAS  Google Scholar 

  • Hodge HC, Indra J, Drobeck HP, Duprey LP, Tainter ML (1972) Acute oral toxicity of methylrosaniline chloride. Toxicol Appl Pharmacol 22:1–5

    Article  CAS  Google Scholar 

  • Husain Q (2009) Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review. Rev Environ Sci Biotechnol 3:117–140

    Google Scholar 

  • Jadhave JP, Govindwar SP (2006) Biotransformation of malachite green by Saccharomyces cerevisiae. Yeast 23:315–323

    Article  CAS  Google Scholar 

  • Kagalkar AN, Jagtap UB, Jhadav JP, Govindwar SP, Bapat SA (2009) Biotechnological strategies for phytoremediation of the sulfonated azo dye direct Red 5B using Blumea malcolmii Hook. Biores Technol 100:4104–4110

    Article  CAS  Google Scholar 

  • Kagalkar NA, Jagtap UB, Jadhav JP, Govindwar SP, Bapat SA (2010) Studies on phytoremediation potentially of Typhonium flagelliforme for the degradation of Brilliant blue R, planta.

    Google Scholar 

  • Kalyani DC, Patil PS, Jadhav JP, Govindwar SP (2008) Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1. Biores Technol 99:4635–4641

    Article  CAS  Google Scholar 

  • Kersten PJ, Kalyanaraman B, Hammel KE, Reinhammar B, Kirk TK (1990) Comparison of lignin peroxidase, Horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem J 268:475–480

    Article  CAS  Google Scholar 

  • Kim SJ, Koh DH, Park JS, Ahn HS, Choi JB, Kim YS (2003) Hemorrhagic cystitis due to intravesical instillation of gentian violet completely recovered with conservative therapy. Yonsei Med J 4:163–165

    Article  Google Scholar 

  • Kiran I, Ilhan S, Caner N, Iscen CF, Yildiz Z (2009) Biosorption properties of dried Neurospora crassa for the removal of Burazol Blue ED dye. Desalination 24:273–278

    Article  CAS  Google Scholar 

  • Koyuncu I (2002) Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinyl sulphone dye: effects of feed concentration and cross flow velocity. Desalination 143:243–253

    Article  CAS  Google Scholar 

  • Kumar R, Ahmad R (2010) Adsorption studies of hazardous malachite green onto treated ginger waste. J Environ Manage 91(4):1032–1038

    Article  CAS  Google Scholar 

  • Kumar R, Ahmad R (2011) Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW). Desalination 265:112–118

    Article  CAS  Google Scholar 

  • Kumar MNVR, Sridhari TR, Bhavani KD, Dutta PK (1998) Trends in color removal from textile mill effluents. Colorage 40:25–34

    Google Scholar 

  • Kunamneni A, Ballesteros A, Plou FJ, Alcalde M (2007) Communicating current research and educational topics and trends in applied microbiology. World Scientific Publishing Co Pvt Ltd, Singapore, pp 233–245

    Google Scholar 

  • Kunamneni A, Plou FJ, Ballesteros A, Alcalde M (2008) Laccase and their applications – a patent review. Recent Pat Biotechnol 2:10–24

    Article  CAS  Google Scholar 

  • Kunjadia PD, Patel FD, Nagee A, Mukhopadhyaya PN, Dave GS (2012) Crystal violet (Triphenylmethane Dye) decolorization potential of pleurotus ostreatus (MTCC 142). Bio Res 7(1):1189–1199

    Google Scholar 

  • Kwasniewska K (1985) Biodegradation of crystal violet (hexamethyl-prosaniline chloride) by oxidative red yeasts. Bull Environ Contam Toxicol 34:323–330

    Article  CAS  Google Scholar 

  • Libra AJ, Borchert M, Vigelahn L, Storm T (2004) Two stage biological treatment of a diazo reactive textile dye and the fate of the dye metabolites. Chemosphere 56:167–180

    Article  CAS  Google Scholar 

  • Lin SH, Lin CM (1993) Treatment of textile waste effluents by ozonation and chemical coagulation. Water Res 27:1743–1748

    Article  CAS  Google Scholar 

  • Littlefield NA, Blackwell BN, Hewitt D, Gaylor D (1985) Chronic toxicity and carcinogenicity studies of gentian violet in mice. Fund Appl Toxicol 5:902–912

    Article  CAS  Google Scholar 

  • Liu W, Chao Y, Yang X, Bao H, Qian S (2004) Biodecolorization of azo, anthraquinonic and triphenylmethane dyes by white-rot fungi and a laccase secreting engineered strain. Ind J Microbiol Biotechnol 31:127–132

    Article  CAS  Google Scholar 

  • Machenbach I (1998) Membrane technology for dye house effluent treatment. Membr Technol 96:7–10

    Google Scholar 

  • Mathur N, Bhatnagar P, Bakre P (2005) Assessing mutagenicity of textile dyes from Pali (Rajasthan) using Ames bioassay. Appl Ecol Environ Res 4:111–118

    Article  Google Scholar 

  • Mauskan JM (2007) Advanced methods for treatment of textile industry effluents. Central Pollution Control Board Ministry of Environment of Forests, New Delhi

    Google Scholar 

  • Mendez-Paz D, Omil F, Lema JM (2005) Water Res 39:771–778

    Article  CAS  Google Scholar 

  • Michaels GB, Lewis DL (1986) Microbial transformation rates of azo and triphenylmethane dyes. Environ Toxicol Chem 5:161–166

    Article  CAS  Google Scholar 

  • Michaels GB, Lewis DL (2006) Sorption and toxicity of azo and triphyenylmethane dyes to aquatic microbial populations. Environ Toxicol Chem 4:45–50

    Article  Google Scholar 

  • Mielgo L, Moreira MT, Feijoo G, Lema JM (2001) A packed bed fungal bioreactor for the continuous decolorisation of azo dyes (Orange II). J Biotechnol 89:99–106

    Article  CAS  Google Scholar 

  • Mishra A, Bajpai M (2005) Flocculation behavior of model textile wastewater treated with a food grade polysaccharide. J Hazard Mater 118:213–217

    Article  CAS  Google Scholar 

  • Mishra G, Tripathy M (1993) A critical review of the treatments for decolorization of textile effluent. Colourage 40:35–38

    CAS  Google Scholar 

  • Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2010) Adsorption of hazardous crystal violet from waste water by waste materials. J Colloid Interface Sci 343:463–473

    Article  CAS  Google Scholar 

  • Mondal PK, Ahmad R, Usmani SQ (2010) Anaerobic biodegradation of triphenylmethane dyes in a hybrid UASFB reactor for wastewater remediation. Biodegradation 21:1041–1047

    Article  CAS  Google Scholar 

  • Moturi B, Singara CMA (2009) Decolorization of crystal violet and malachite green by fungi. Scientific World Journal 4:28–33

    Google Scholar 

  • Movahedin H, Shokoohi R, Parvaresh A, Hajia M, Jafri JA (2006) Evaluating the effect of glucose on phenol removal efficiency and changing the dominant microorganisms in the serial combined biological systems. J Res Health Sci 6:8–13

    Google Scholar 

  • Mugdha A, Usha M (2012) Enzymatic treatment of wastewater containing dyestuffs using different delivery systems. Sci Rev Chem Commun 2:31–40

    Google Scholar 

  • Mugdha K, Mark S, Sridhar H (2011) Epigenomic and RNA structural correlates of polyadenylation. RNA biology 8(3):529–537

    Google Scholar 

  • Muragesan K, Nam IH, Kim YM, Chang YS (2007) Enzyme Microb Technol 40:1662–1672

    Article  CAS  Google Scholar 

  • Muthukumar M, Sargunamani D, Senthilkumar M, Selvakumai N (2005) Studies on decoloration, toxity and the possibility for recycling of acid dye effluents using ozone treatment. Dyes Pigments 64:39–44

    Article  CAS  Google Scholar 

  • Nelson C, Cox M (2004) Principles of biochemistry, 4th edn. W.H. Freeman, New York, NY, pp 47–50

    Google Scholar 

  • Nelson CR, Hites RA (1980) Aromatic amines in and near the Buffalo River. Environ Sci Technol 14:1147–1149

    Article  CAS  Google Scholar 

  • Nesheiwat FK, Swanson AG (2000) Clean contaminated sites using Fenton’s reagent. Chem Eng Prog 96:61–66

    CAS  Google Scholar 

  • O’Neill C, Hawkes FR, Hawkes DL, Lourenco ND, Pinherio HM, Delee W (1999) Color in textile effluents sources, measurements, discharge consents and simulation. A review. J Chem Technol Biotechnol 74:1009–1018

    Article  Google Scholar 

  • Ogutveren UB, Kaparal S (1994) Color removal from textile effluents by electrochemical destruction. J Environ Sci Health A 29:1–16

    Article  Google Scholar 

  • Pandey A, Single P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegradation 59:73–84

    Article  CAS  Google Scholar 

  • Park TJ, Lee KH, Jung EJ, Kim CW (1999) Removal of refractory organics and color in pigment wastewater with Fenton oxidation. Water Sci Technol 39:189–192

    Article  CAS  Google Scholar 

  • Parshetti G, Kalme S, Saratale G, Govindwar S (2006) Biodegradation of malachite green by Kocuria rosea MTCC 1532. Acta Chim Slov 4:492–498

    Google Scholar 

  • Parshetti GK, Telke AA, Kalyani DC, Govindwar SP (2010) Decolorization and detoxification of sulfonated azo dye Methyl Orange by Kocuria rosea MTCC 1532. J Hazardous Mat 176(1–3):503–509

    Google Scholar 

  • Parshetti GK, Parshetti SG, Telke AA, Kalyani DC, Doong RA, Govindwar SP (2011) Biodegradation of crystal violet by Agrobacterium radiobacter. J Environ Sci 23:1384–1393

    Article  CAS  Google Scholar 

  • Pelegrini R, Peralto-Zamora P, de Andrade AR, Reyers J, Duran N (1999) Electrochemically assisted photocatalytic degradation of reactive dyes. Appl Catal B Environ 22:83–90

    Article  CAS  Google Scholar 

  • Peralto-Zamora P, Kunz A, Gomez de Morales S, Pelegrini R, de Capos MP, Reyes J, Duran N (1999) Degradation of reactive dyes I. A comparative study of ozonation, enzymatic and photochemical processes. Chemosphere 38:835–852

    Article  Google Scholar 

  • Raffi F, Hall JD, Cernigila CE (1997) Mutagenecity of azo dyes used in foods, drugs and cosmetics before and after reduction of Clostridium species from the human intestinal tract. Food Chem Toxicol 35:897–901

    Article  Google Scholar 

  • Raghavacharya C (1997) Color removal from industrial effluents – a comparative review of available technologies. Chem Eng World 32:53–54

    CAS  Google Scholar 

  • Rajamohan N, Karthikeyan C (2004) Fungi biodegradation of dye house effluent and Kinetic modeling. Department of Chemical Engineering, Annamalai University, Annamalainagar, Annamalainagar

    Google Scholar 

  • Rao KLLN, Krishnaiah K, Ashutush N (1994) Color removal from a dye stuff industry effluent using activated carbon. Ind J Chem Technol 1:13–19

    CAS  Google Scholar 

  • Reife A (1993) Kirk-Othmer encyclopedia of chemical technology, fourth ed, vol. 8, John Wiley, 753

    Google Scholar 

  • Reinhardt C, Travis AS (2000) Heinrich Caro and the creation of modern chemical industry. Kluwer, Dordrecht, pp 208–209

    Book  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biores Technol 77:247–255

    Article  CAS  Google Scholar 

  • Rodriguez CS, Tocam JL, Herrera JL (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513

    Article  CAS  Google Scholar 

  • Roth P, Sattler K, Berger R, Vim M (1992) Hydrophobicity and microbial activities, III, discoloring, detoxification, and degradation of triphenylmethane dyes. Zbl Microbiol 147:409–417

    CAS  Google Scholar 

  • Sadrghayeni S, Beatson P, Schneider R, Fane A (1998) Water reclamation from municipal wastewater using combined microfiltration-reverse osmosis (ME-RO): preliminary performance data and microbiological aspects of system operation. Desalination 116:65–80

    Article  Google Scholar 

  • Saeed A, Sharif M, Iqbal M (2010) Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption. J Hazard Mater 179:564–572

    Article  CAS  Google Scholar 

  • Saha PD, Chakraborty S, Chowdhury S (2012) Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpus heterophyllus (jackfruit) leaf powder. Colloids Surf B Biointerfaces 92:262–270

    Article  CAS  Google Scholar 

  • Schnick RA (1988) The impetus to register new therapeutants for aquaculture. Prog Fish Cult 50:190–196

    Article  Google Scholar 

  • Sen S, Demirer GN (2003) Anaerobic treatment of synthetic textile wastewater containing a reactive azo dye. J Environ Eng 129:595–601

    Article  CAS  Google Scholar 

  • Senthilkumaar S, Kalaamani P, Subburaam CV (2006) Liquid phase adsorption of crystal violet onto activated carbons derived from male flowers of coconut tree. J Hazard Mater 136:800–808

    Article  CAS  Google Scholar 

  • Sewekow U (1993) Treatment of reactive dye effluents with hydrogen peroxide/iron(II) sulphate. Melliand Textil 74:153–156

    Google Scholar 

  • Shah MP, Patel KA, Nair SS (2013) Microbiological removal of crystal violet dye by Bacillus subtilis ETL-2211. OA Biotechnol 2:9

    Google Scholar 

  • Shahin MM, Von Borstel RC (1978) Comparisons of mutation induction in reversion systems of Saccharomyces cerevisiae and Salmonella fyphimurium. Mutat Res 53:1–10

    Article  CAS  Google Scholar 

  • Sharma M, Kaushik A, Kaushik CP (2011) Waste biomass of Nostoc linckia as adsorbent of crystal violet dye: optimization based on statistical model. Int Biodeterior Biodegrad 65:513–521

    Article  CAS  Google Scholar 

  • Shengfang L (2010) Removal of crystal violet from aqueous solution by sorption into semi-interpenetrated networks hydrogels constituted of poly(acrylic acid-acrylamide-methacrylate) and amylase. Biores Technol 101:2197–2202

    Article  CAS  Google Scholar 

  • Slokar YM, Le Marechal MA (1997) Methods of decoloration of textile wastewater. Dyes Pigments 37:335–356

    Article  Google Scholar 

  • Sperling MV, de Lemos Chenicharo CA (2005) Biological wastewater treatment in warm climate regions. IWA Publ 1:495–656

    Google Scholar 

  • Suzuki M (1997) Role of adsorption in water environment processes. Water Sci Technol 35:1–11

    Article  CAS  Google Scholar 

  • Telke A, Kalyani D, Jadhav J, Govindwar S (2008) Kinetics and mechanism of reactive Red 141 degradation by a bacterial isolate Rhizobium radiobacter MTCC 8161. Acta Chim Slov 55:320–329

    CAS  Google Scholar 

  • Thetner D (2000) Triphenylmethane and related dyes, Kirk-Othmer encyclopedia of chemical technology. Wiley, New York, NY

    Google Scholar 

  • Tinghui L, Matsuura T, Sourirajan S (1983) Effect of membrane materials and pore sizes on reverse osmosis separation of dyes. Ind Eng Chem Prod Res Dev 22:77–85

    Article  CAS  Google Scholar 

  • Toh YC, Yen JJL, Obbard JP, Ting YP (2003) Decolorization of azo dyes by white-rot fungi (WRF) isolated in Singapore. Enzyme Microbial Technol 33:569–575

    Article  CAS  Google Scholar 

  • Treffry Goatley K, Buckley CA, Groves GR (1983) Reverse osmosis treatment and reuse of textile dye house effluents. Desalination 47:313–320

    Article  CAS  Google Scholar 

  • Tsai W, Chang CY, Ing CH, Chang CF (2004) Adsorption of acid dyes from aqueous solution on activated bleaching earth. J Colloid Interface Sci 275:72–78

    Article  CAS  Google Scholar 

  • Upadhyay RS (2002) Microbial bioremediation of textile effluents in biotransformations: bioremediation technology for health and environmental protection.

    Google Scholar 

  • Us EPA (2000) Wastewater technology fact sheet. Trickling filters. 832-F-00-014. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Vandevivere PC, Bianchi R, Verstaete W (1998) Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J Chem Technol Biotechnol 72:289–302

    Article  CAS  Google Scholar 

  • Vasdev K, Kuhad RC, Saxena RK (1995) Decolorization of triphenylmethane dye by the bird’s nest fungus Cyarhus bulleri. Curt Microbial 30:269–272

    Article  Google Scholar 

  • Verma P, Madamwar D (2003) Decolorization of synthetic dyes by a newly isolated strain of Serratia Marcescers. World J Microbiol Biotechnol 19:615–618

    Article  CAS  Google Scholar 

  • Walsh C, Walsh A (1986) Haemorrhagic cystitis due to gentian violet. Br Med J 293:732

    Article  CAS  Google Scholar 

  • Watters JC, Biagtan E, Senler O (1991) Ultrafiltration of a textile plant effluent. Sep Sci Technol 26:1295–1313

    Article  CAS  Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    Article  CAS  Google Scholar 

  • William A, Butler MA, Bloom SE, Matney TS (1979) Further study of the genetic toxicity of gentian violet. Mutat Res 66:103–112

    Article  Google Scholar 

  • Willian AU, Pathak S, Cheryl J, Hsu TC (1978) Cytogenic toxicity of gentian violet and crystal violet on mammalian cells in vitro. Mutat Res 58:269–276

    Article  Google Scholar 

  • Xu Y, Lebrun RE (1991) Treatment of textile dye plant effluent by nanofiltration membrane. Sep Sci Technol 34:2501–2519

    Article  Google Scholar 

  • Yang Y, Wyatt DT II, Bahorshky M (1998) Decolorization of dyes using UV/H2O2 photochemical oxidation. Textil Chem Color 30:27–35

    CAS  Google Scholar 

  • Yatome C, Ogawa T, Matsui M (1991) Degradation of crystal violet by Bacillus subtilis. J Environ Sci Health 26:75–87

    Google Scholar 

  • Yatome C, Yamada S, Ogawa T, Matsui M (1993) Degradation of crystal violet by Nocardia corallina. Appl Microbiol Biotechnol 38:565–569

    Article  CAS  Google Scholar 

  • Yesilada O (1995) Decolorization of crystal violet by fungi. World J Microbial Biotechnol 11:601–602

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to the University Grants Commission (UGC), New Delhi, India for providing the financial support as RGNF Fellowship to Ms. Sujata for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Naresh Bharagava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mani, S., Bharagava, R.N. (2016). Exposure to Crystal Violet, Its Toxic, Genotoxic and Carcinogenic Effects on Environment and Its Degradation and Detoxification for Environmental Safety. In: de Voogt, W. (eds) Reviews of Environmental Contamination and Toxicology Volume 237. Reviews of Environmental Contamination and Toxicology, vol 237. Springer, Cham. https://doi.org/10.1007/978-3-319-23573-8_4

Download citation

Publish with us

Policies and ethics