Skip to main content

Engineered Mammalian Chromosomes in Cellular Protein Production: Future Prospects

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 738))

Abstract

The manufacture of recombinant proteins at industrially relevant levels requires technologies that can engineer stable, high expressing cell lines rapidly, reproducibly, and with relative ease. Commonly used methods incorporate transfection of mammalian cell lines with plasmid DNA containing the gene of interest. Identifying stable high expressing transfectants is normally laborious and time consuming. To improve this process, the use of engineered chromosomes has been considered. To date, the most successful technique has been based on the artificial chromosome expression or ACE System, which consists of the targeted transfection of cells containing mammalian based artificial chromosomes with multiple recombination acceptor sites. This ACE System allows for the specific transfection of single or multiple gene copies and eliminates the need for random integration into native host chromosomes. The utility of using artificial engineered mammalian chromosomes, specifically the ACE System, is illustrated in several case studies covering the generation of CHO cell lines expressing monoclonal antibodies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sternberg, N. (1990) Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs Proc. Natl. Acad. Sci. U.S.A. 87, 103–107.

    Article  CAS  Google Scholar 

  2. Ioannou, P. A., Amemiya, C. T., Garnes, J., Kroisel, P. M., Shizuya, H., Chen, C., Batzer, M. A. and de Jong, P. J. (1994) A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat. Genet. 6, 84–89.

    Article  PubMed  CAS  Google Scholar 

  3. Murray, A. W. and Szostak, J. W. (1983) Construction of artificial chromosomes in yeast Nature, 305, 189–193.

    CAS  Google Scholar 

  4. Burke, D. T., Carle, G. F. and Olson, M. V. (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806–812.

    Article  PubMed  CAS  Google Scholar 

  5. Chumakov, I. M., Rigault, P., Le, G. I., Bellanne-Chantelot, C., Billault, A., Guillou, S., Soularue, P., Guasconi, G., Poullier, E., Gros, I. et al. (1995) A YAC contig map of the human genome Nature 377, 175–297.

    CAS  Google Scholar 

  6. Al Shawi, R., Kinnaird, J., Burke, J. and Bishop, J. O. (1990) Expression of a foreign gene in a line of transgenic mice is modulated by a chromosomal position effect Mol. Cell Biol. 10, 1192–1198.

    CAS  Google Scholar 

  7. Costantini, F., Radice, G., Lee, J. L., Chada, K. K., Perry, W. and Son, H. J. (1989) Insertional mutations in transgenic mice Prog. Nucleic Acid Res. Mol. Biol. 36, 159–169.

    Article  CAS  Google Scholar 

  8. Huxley, C. (1994) Mammalian artificial chromosomes: a new tool for gene therapy Gene Ther 1, 7–12.

    CAS  Google Scholar 

  9. Ascenzioni, F., Donini, P., and Lipps, H. J. (1997) Mammalian artificial chromosomes-vectors for somatic gene therapy Cancer Lett 118, 135–142.

    CAS  Google Scholar 

  10. Vos, J. M. (1998) Mammalian artificial chromosomes as tools for gene therapy Curr Opin Genet Dev 8, 351–359.

    CAS  Google Scholar 

  11. Brown, W. R., Mee, P. J., and Hong, S. M. (2000) Artificial chromosomes: ideal vectors? Trends Biotechnol 18, 218–223.

    Article  PubMed  CAS  Google Scholar 

  12. Lipps, H. J., Jenke, A.C., Nehlsen, K. et al. (2003) Chromosome-based vectors for gene therapy Gene 304, 23–33.

    CAS  Google Scholar 

  13. Cooke, H. (2001) Mammalian artificial chromosomes as vectors: progress and prospects. Cloning Stem Cells 3, 243–249.

    Article  PubMed  CAS  Google Scholar 

  14. Lewis, M. (2001) Human artificial chromosomes: emerging from concept to reality in biomedicine Clin Genet 59, 15–16.

    Google Scholar 

  15. Lipps, H. J., and Bode, J. (2001) Exploiting chromosomal and viral strategies: the design of safe and efficient non-viral gene transfer systems Curr Opin Mol Ther 3, 133–141.

    CAS  Google Scholar 

  16. Grimes, B. R., Warburton, P.E., and Farr, C. J. (2002) Chromosome engineering: prospects for gene therapy. Gene Ther 9, 713–718.

    Article  PubMed  CAS  Google Scholar 

  17. Grimes, B. R., Rhoades, A. A., and Willard, H. F. (2002) Alpha-satellite DNA and vector composition influence rates of human artificial chromosome formation Mol Ther 5, 798–805.

    CAS  Google Scholar 

  18. Larin, Z., and Mejia, J. E. (2002) Advances in human artificial chromosome technology. Trends Genet 18, 313–319.

    Article  PubMed  CAS  Google Scholar 

  19. Saffery, R., and Choo, K. H. (2002) Strategies for engineering human chromosomes with therapeutic potential J Gene Med 4, 5–13.

    Google Scholar 

  20. Harrington, J. J., Van Bokkelen, G., Mays, R. W. et al. (1997) Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet 15, 345–355.

    Article  PubMed  CAS  Google Scholar 

  21. Warburton, P. E., and Cooke, H. J. (1997) Hamster chromosomes containing amplified human alpha-satellite DNA show delayed sister chromatid separation in the absence of de novo kinetochore formation Chromosoma 106, 149–159.

    CAS  Google Scholar 

  22. Ikeno, M., Grimes, B., Okazaki, T. et al. (1998) Construction of YAC-based mammalian artificial chromosomes Nat Biotechnol 16, 431–439.

    CAS  Google Scholar 

  23. Henning, K. A., Novotny, E. A., Compton, S.T. et al. (1999) Human artificial chromosomes generated by modification of a yeast artificial chromosome containing both human alpha satellite and single-copy DNA sequences Proc Natl Acad Sci USA 96, 592–597.

    CAS  Google Scholar 

  24. Ebersole, T. A., Ross, A., Clark, E. et al. (2009) Mammalian artificial chromosome formation from circular alphoid input DNA does not require telomere repeats Hum Mol Genet 9, 1623–1631.

    Google Scholar 

  25. Mejia, J. E., Willmott, A., Levy, E. et al. (2001) Functional complementation of a genetic deficiency with human artificial chromosomes Am J Hum Genet 69, 315–326.

    CAS  Google Scholar 

  26. Mejia, J. E., Alazami, A., Wilmott, A. et al. (2002) Efficiency of de novo centromere formation in human artificial chromosomes Genomics 79, 297–304.

    CAS  Google Scholar 

  27. Carine, K., Solus, J., Waltzer, E. et al. (1986) Chinese hamster cells with a minichromosome containing the centromere region of human chromosome 1 Somat Cell Mol Genet 12, 479–491.

    Google Scholar 

  28. Farr, C. J., Stevanovic, M., Thomson, E. J. et al. (1992) Telomere-associated chromosome fragmentation: applications in genome manipulation and analysis Nat Genet 2, 275–282.

    CAS  Google Scholar 

  29. Hadlaczky, G., Praznovszky, T., Cserpan, I., Kereso, J., Peterfy, M., Kelemen, I., Atalay, E., Szeles, A., Szelei, J., Tubak, V. et al. (1991) Centromere formation in mouse cells cotransformed with human DNA and a dominant marker gene Proc. Natl. Acad. Sci. U.S.A 88, 8106–8110.

    Article  CAS  Google Scholar 

  30. Praznovszky, T., Kereso, J., Tubak, V., Cserpan, I., Fatyol, K. and Hadlaczky, G. (1991) De novo chromosome formation in rodent cells Proc. Natl. Acad. Sci. U.S.A 88, 11042–11046.

    Article  CAS  Google Scholar 

  31. Christ, M., Lusky, M., Stoeckel, F. et al. (1997) Gene therapy with recombinant adenovirus vectors: evaluation of the host immune response Immunol Lett 57, 19–25.

    CAS  Google Scholar 

  32. Hadlaczky, G. (2001) Satellite DNA-based artificial chromosomes for use in gene therapy Curr. Opin. Mol. Ther. 3, 125–132.

    CAS  Google Scholar 

  33. Lindenbaum, M., Perkins, E., Csonka, E., Fleming, E., Garcia, L., Greene, A., Gung, L., Hadlaczky, G., Lee, E., Leung, J., MacDonald, N., Maxwell, A., Mills, K., Monteith, D. Perez, C.F., Shellard, J., Stewart, S., Stodola, T., Vandenborre, D., Vanderbyl, S. and Ledebur, H.C. (2004) A mammalian artificial chromosome engineering system (ACE System) applicable to biopharmaceutical protein production, transgenesis and gene-based cell therapy Nucleic Acids Research 32 (21), e172.

    Google Scholar 

  34. Csonka, E., Cserpan, I., Fodor, K., Hollo, G., Katona, R., Kereso, J., Praznovszky, T., Szakal, B., Telenius, A., de Jong, G. et al. (2000) Novel generation of human satellite DNA-based artificial chromosomes in mammalian cells J. Cell Sci. 113, 3207–3216.

    CAS  Google Scholar 

  35. Hollo, G., Kereso, J., Praznovszky, T., Cserpan, I., Fodor, K., Katona, R., Csonka, E., Fatyol, K., Szeles, A., Szalay, A. A. et al. (1996) Evidence for a megareplicon covering megabases of centromeric chromosome segments Chromosome Res. 4, 240–247.

    CAS  Google Scholar 

  36. Kereso, J., Praznovszky, T., Cserpan, I., Fodor, K., Katona, R., Csonka, E., Fatyol, K., Hollo, G., Szeles, A., Ross, A. R. et al. (1996) De novo chromosome formations by large-scale amplification of the centromeric region of mouse chromosomes Chromosome Res. 4, 226–239.

    CAS  Google Scholar 

  37. De Jong, G., Telenius, A. H., Telenius, H., Perez, C., Drayer, J., and Hadlaczky, G. (1999) Mammalian artificial chromosome pilot production facility: large-scale isolation of functional satellite DNA-based artificial chromosomes Cytometry 35, 129–133.

    Google Scholar 

  38. Perez, C.F., Vanderbyl, S.L., Mills, K.A., and Ledebur, H.C. (2004) The ACE System: A versatile chromosome engineering technology with applications for gene-based cell therapy. Bioprocessing Journal 3, 61–68.

    Google Scholar 

  39. De Jong, G., Telenius, A., Vanderbyl, S., Meitz, A. and Drayer, J. (2001) Efficient in-vitro transfer of a 60-Mb mammalian artificial chromosome into murine and hamster cells using cationic lipids and dendrimers Chromosome Res. 9, 475–485.

    Google Scholar 

  40. Vanderbyl, S., MacDonald, N. and de Jong,G. (2001) A flow cytometry technique for measuring chromosome-mediated gene transfer. Cytometry 44, 100–105.

    Article  PubMed  CAS  Google Scholar 

  41. Vanderbyl, S., MacDonald, G. N., Sidhu, S., Gung, L., Telenius, A., Perez, C. and Perkins, E. (2004) Transfer and stable transgene expression of a mammalian artificial chromosome into bone marrow-derived human mesenchymal stem cells Stem Cells 22, 324–33.

    CAS  Google Scholar 

  42. Co, D. O., Borowski, A. H., Leung, J. D., van der Kaa, J., Hengst, S., Platenburg, G. J., Pieper, F. R., Perez, C. F., Jirik, F. R. and Drayer, J. I. (2000) Generation of transgenic mice and germline transmission of a mammalian artificial chromosome introduced into embryos by pronuclear microinjection Chromosome Res. 8, 183–191.

    CAS  Google Scholar 

  43. Monteith, D. P., Leung, J. D., Borowski, A. H., Co, D. O., Praznovszky, T., Jirik, F. R., Hadlaczky, G. and Perez, C. F. (2004) Pronuclear microinjection of purified artificial chromosomes for generation of transgenic mice: pick-and-inject technique. Methods Mol. Biol. 240, 227–242.

    PubMed  CAS  Google Scholar 

  44. Landy, A. (1989) Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Ann. Rev. Biochem. 58, 913–949.

    Article  PubMed  CAS  Google Scholar 

  45. Kennard, M. L., Goosney, D. G., and Ledebur, H. C. (2007) Generating stable, high-expressing cell lines for recombinant protein manufacture BioPharm International March, 52–59.

    Google Scholar 

  46. Kennard, M. L., Goosney, D. G., Monteith, D., Zhang, L., Moffat, M., Fischer, D., and Mott, J. (2009) The generation of stable, high MAb expressing CHO cell lines based on the Artificial Chromosome Expression (ACE) technology Biotech. and Bioeng. 104(3), 540–553.

    Google Scholar 

  47. Kennard, M. L., Goosney, D. G., Monteith, D., Roe, S., Fischer, D., and Mott, J. (2009) Auditioning of CHO Host Cell Lines Using the Artificial Chromosome Expression (ACE) Technology Biotech. and Bioeng. 104(3), 526–539.

    Google Scholar 

  48. Vanderbyl, S., Sullenbarger, B., White, N., Perez, C.F., MacDonald, G.N., Stodola, T., Bunnell, B.A., Ledebur Jr., H.C., and Lasky, L.C. (2005) Transgene expression after stable transfer of a mammalian artificial chromosome into human hematopoietic cells Experimental Hematology 33, 1470–1476.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm L. Kennard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kennard, M.L. (2011). Engineered Mammalian Chromosomes in Cellular Protein Production: Future Prospects. In: Hadlaczky, G. (eds) Mammalian Chromosome Engineering. Methods in Molecular Biology, vol 738. Humana Press. https://doi.org/10.1007/978-1-61779-099-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-099-7_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-098-0

  • Online ISBN: 978-1-61779-099-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics