Skip to main content

The Role of Inflammatory Mediators in Liver Failure

  • Chapter
  • First Online:

Part of the book series: Clinical Gastroenterology ((CG))

Abstract

In response to tissue trauma, viral invasion, or an insult of any etiology, the liver develops a localized inflammatory response, which serves to destroy, dilute, or wall off the injurious agent and the injured tissue. Under some circumstances, however, an excessive inflammatory response causes extensive liver damage and triggers acute liver failure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ramadori G, Armbrust T. Cytokines in the liver. Eur J Gastroenterol Hepatol 2001;13:777–84.

    PubMed  CAS  Google Scholar 

  2. Bown MJ, Nicholson ML, Bell PR, et al. Cytokines and inflammatory pathways in the pathogenesis of multiple organ failure following abdominal aortic aneurysm repair. Eur J Vasc Endovasc Surg 2001;22:485–95.

    PubMed  CAS  Google Scholar 

  3. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001;104:487–501.

    PubMed  CAS  Google Scholar 

  4. Tacke F, Luedde T, Trautwein C. Inflammatory pathways in liver homeostasis and liver injury. Clin Rev Allergy Immunol 2009;36:4–12.

    PubMed  CAS  Google Scholar 

  5. Streetz K, Leifeld L, Grundmann D, et al. Tumor necrosis factor alpha in the pathogenesis of human and murine fulminant hepatic failure. Gastroenterology 2000;119:446–60.

    PubMed  CAS  Google Scholar 

  6. Muto Y, Nouri-Aria KT, Meager A, et al. Enhanced tumour necrosis factor and interleukin-1 in fulminant hepatic failure. Lancet 1988;2:72–4.

    PubMed  CAS  Google Scholar 

  7. Tilg H, Vogel W, Aulitzky WE, et al. Evaluation of cytokines and cytokine-induced secondary messages in sera of patients after liver transplantation. Transplantation 1990;49:1074–80.

    PubMed  CAS  Google Scholar 

  8. Lau JY, Sheron N, Nouri-Aria KT, et al. Increased tumor necrosis factor-alpha receptor number in chronic hepatitis B virus infection. Hepatology 1991;14:44–50.

    PubMed  CAS  Google Scholar 

  9. McClain CJ, Cohen DA. Increased tumor necrosis factor production by monocytes in alcoholic hepatitis. Hepatology 1989;9:349–51.

    PubMed  CAS  Google Scholar 

  10. Jirillo E, Caccavo D, Magrone T, et al. The role of the liver in the response to LPS: experimental and clinical findings. J Endotoxin Res 2002;8:319–27.

    PubMed  CAS  Google Scholar 

  11. Tilg H. Cytokines and liver diseases. Can J Gastroenterol 2001;15:661–8.

    PubMed  CAS  Google Scholar 

  12. Jazrawi SF, Zaman A, Muhamad Z, et al. Tumor necrosis factor-alpha promoter polymorphisms and the risk of rejection after liver transplantation: a case control analysis of 210 donor-recipient pairs. Liver Transpl 2003;9:377–82.

    PubMed  Google Scholar 

  13. Ladero JM, Fernández-Arquero M, Tudela JI, et al. Single nucleotide polymorphisms and microsatellite alleles of tumor necrosis factor alpha and interleukin-10 genes and the risk of advanced chronic alcoholic liver disease. Liver 2002;22:245–51.

    PubMed  CAS  Google Scholar 

  14. Tsuchiya N, Tokushige K, Yamaguchi N, et al. Influence of TNF gene polymorphism in patients with acute and fulminant hepatitis. J Gastroenterol 2004;39:859–66.

    PubMed  Google Scholar 

  15. Simeonova PP, Gallucci RM, Hulderman T, et al. The role of tumor necrosis factor-alpha in liver toxicity, inflammation, and fibrosis induced by carbon tetrachloride. Toxicol Appl Pharmacol 2001;177:112–120.

    PubMed  CAS  Google Scholar 

  16. Van Molle W, Denecker G, Rodriguez I, et al. Activation of caspases in lethal experimental hepatitis and prevention by acute phase proteins. J Immunol 1999;163:5235–41.

    PubMed  Google Scholar 

  17. Leist M, Gantner F, Jilg S, et al. Activation of the 55 kDa TNF receptor is necessary and sufficient for TNF-induced liver failure, hepatocyte apoptosis, and nitrite release. J Immunol 1995;154:1307–16.

    PubMed  CAS  Google Scholar 

  18. Comerford LW, Bickston SJ. Treatment of luminal and fistulizing Crohn’s disease with infliximab. Gastroenterol Clin North Am 2004;33:387–406.

    PubMed  Google Scholar 

  19. Maini R, St Clair EW, Breedveld F, et al. Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 1999;354:1932–9.

    PubMed  CAS  Google Scholar 

  20. Tilg H, Jalan R, Kaser A, et al. Anti-tumor necrosis factor-alpha monoclonal antibody therapy in severe alcoholic hepatitis. J Hepatol 2003;38:419–25.

    PubMed  CAS  Google Scholar 

  21. Sharma P, Kumar A, Sharma BC, et al. Infliximab monotherapy for severe alcoholic hepatitis and predictors of survival: an open label trial. J Hepatol 2009;50:584–91.

    PubMed  CAS  Google Scholar 

  22. Ueno Y, Tanaka S, Shimamoto M, et al. Infliximab therapy for Crohn’s disease in a patient with chronic hepatitis B. Dig Dis Sci 2005;50:163–6.

    PubMed  Google Scholar 

  23. Esteve M, Saro C, González-Huix F, et al. Chronic hepatitis B reactivation following infliximab therapy in Crohn’s disease patients: need for primary prophylaxis. Gut 2004;53:1363–5.

    PubMed  CAS  Google Scholar 

  24. Streetz KL, Luedde T, Manns MP, et al. Interleukin 6 and liver regeneration. Gut 2000;47:309–12.

    PubMed  CAS  Google Scholar 

  25. Streetz KL, Tacke F, Leifeld L, et al. Interleukin 6/gp130-dependent pathways are protective during chronic liver diseases. Hepatology 2003;38:218–29.

    PubMed  CAS  Google Scholar 

  26. Zhang D, Sun M, Samols D, et al. STAT3 participates in transcriptional activation of the C-reactive protein gene by interleukin-6. J Biol Chem 1996;271:9503–9.

    PubMed  CAS  Google Scholar 

  27. Ramadori G, Van Damme J, Rieder H, et al. Interleukin 6, the third mediator of acute-phase reaction, modulates hepatic protein synthesis in human and mouse. Comparison with interleukin 1 beta and tumor necrosis factor-alpha. Eur J Immunol 1988;18:1259–64.

    PubMed  CAS  Google Scholar 

  28. Iñiguez M, Berasain C, Martinez-Ansó E, et al. Cardiotrophin-1 defends the liver against ischemia-reperfusion injury and mediates the protective effect of ischemic preconditioning. J Exp Med 2006;203:2809–15.

    PubMed  Google Scholar 

  29. Wu D, Cederbaum AI. Alcohol, oxidative stress, and free radical damage. Alcohol Res Health 2003;27:277–84.

    PubMed  Google Scholar 

  30. Lieber CS. Role of oxidative stress and antioxidant therapy in alcoholic and nonalcoholic liver diseases. Avd. Pharmacol 1997;38:601–28.

    CAS  Google Scholar 

  31. Yamamoto Y, Yamashita S, Fujisawa A, et al. Oxidative stress in patients with hepatitis, cirrhosis, and hepatoma evaluated by plasma antioxidants. Biochem Biophys Res Commun 1998;247:166–70.

    PubMed  CAS  Google Scholar 

  32. Cabré M, Ferré N, Folch J, et al. Inhibition of hepatic cell nuclear DNA fragmentation by zinc in carbon tetrachloride-treated rats. J Hepatol 1999;31: 228–34.

    PubMed  Google Scholar 

  33. Corrales F, Giménez A, Alvarez L, et al. S-adenosylmethionine treatment prevents carbon tetrachloride-induced S-adenosylmethionine synthetase inactivation and attenuates liver injury. Hepatology 1992;16:1022–7.

    PubMed  CAS  Google Scholar 

  34. Balsinde J, Winstead MV, Dennis EA. Phospholipase A(2) regulation of arachidonic acid mobilization. FEBS Lett 2002;531:2–6.

    PubMed  CAS  Google Scholar 

  35. Romano M, Clària J. Cyclooxygenase-2 and 5-lipoxygenase converging functions on cell proliferation and tumor angiogenesis: implications for cancer therapy. FASEB J 2003;17:1986–95.

    PubMed  CAS  Google Scholar 

  36. Dudzinski DM, Serhan CN. Pharmacology of eicosanoids. In: Golan DE, Tashjian AH, Armstrong EJ, Galanter JM, Armstrong AW, Arnaout RA, Rose HS, eds. Principles of pharmacology: The pathophysiologic basis of drug therapy. Philadelphia, Pa: Lippincott Williams & Wilkins; 2004:627–46.

    Google Scholar 

  37. Montuschi P, Barnes PJ, Roberts LJ, II. Isoprostanes: markers and mediators of oxidative stress. FASEB J 2004;18:1791–800.

    PubMed  CAS  Google Scholar 

  38. Smith WL, Song I. The enzymology of prostaglandin endoperoxide H synthases-1 and -2. Prostaglandins Other Lipid Mediat 2002;68–9:115–28.

    Google Scholar 

  39. Clària J. Cyclooxygenase-2 biology. Curr Pharm Des 2003;9:2177–90.

    PubMed  Google Scholar 

  40. Morita I. Distinct functions of COX-1 and COX-2. Prostaglandins Other Lipid Mediat 2002;68–9:165–75.

    Google Scholar 

  41. Jakobsson PJ, Thoren S, Morgenstern R, et al. Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci USA 1999;96:7220–5.

    PubMed  CAS  Google Scholar 

  42. Breyer RM, Bagdassarian CK, Myers SA, et al. Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol 2001;41:661–90.

    PubMed  CAS  Google Scholar 

  43. FitzGerald GA, Patrono CN. The coxibs, selective inhibitors of cyclooxygenase-2. N Engl J Med 2001;345:433–42.

    PubMed  CAS  Google Scholar 

  44. Clària J, Arroyo V. Prostaglandins and other cyclooxygenase-dependent arachidonic acid metabolites and the kidney in liver disease. Prostaglandins Other Lipid Mediat 2003;72:19–33.

    PubMed  Google Scholar 

  45. Bosch-Marcé M, Clària J, Titos E, et al. Selective inhibition of cyclooxygenase 2 spares renal function and prostaglandin synthesis in cirrhotic rats with ascites. Gastroenterology 1999;116:1167–75.

    PubMed  Google Scholar 

  46. López-Parra M, Clària J, Planagumà A, et al. Cyclooxygenase-1 derived prostaglandins are involved in the maintenance of renal function in rats with cirrhosis and ascites. Br J Pharmacol 2002;135:891–900.

    PubMed  Google Scholar 

  47. Clària J, Kent JD, López-Parra M, et al. Effects of celecoxib and naproxen on renal function in nonazotemic patients with cirrhosis and ascites. Hepatology 2005;41:579–87.

    PubMed  Google Scholar 

  48. Narumiya S, FitzGerald GA. Genetic and pharmacological analysis of prostanoid receptor function. J Clin Invest 2001;108:25–30.

    PubMed  CAS  Google Scholar 

  49. Tolman KG. Eicosanoids and the liver. Prostaglandins Other Lipid Mediat 2000;61:163–74.

    PubMed  CAS  Google Scholar 

  50. Sinclair SB, Greig PD, Blendis LM, et al. Biochemical and clinical response of fulminant viral hepatitis to administration of prostaglandin E. A preliminary report. J Clin Invest 1989;84:1063–9.

    PubMed  CAS  Google Scholar 

  51. Lim SP, Andrews FJ, O’Brien PE. Misoprostol protection against acetaminophen-induced hepatotoxicity in the rat. Dig Dis Sci 1994;39:1249–56.

    PubMed  CAS  Google Scholar 

  52. Cattral MS, Altraif I, Greig PD, et al. Toxic effects of intravenous and oral prostaglandin E therapy in patients with liver disease. Am J Med 1994;97: 369–73.

    PubMed  CAS  Google Scholar 

  53. Sterling RK, Luketic VA, Sanyal AJ, et al. Treatment of fulminant hepatic failure with intravenous prostaglandin E1. Liver Transpl Surg 1998;4: 424–31.

    PubMed  CAS  Google Scholar 

  54. Núñez O, Fernández-Martínez A, Majano PL, et al. Increased intrahepatic cyclooxygenase 2, matrix metalloproteinase 2, and matrix metalloproteinase 9 expression is associated with progressive liver disease in chronic hepatitis C virus infection: role of viral core and NS5A proteins. Gut 2004;53:1665–72.

    PubMed  Google Scholar 

  55. Mohammed NA, El Aleem SA, El Hafiz HA, et al. Distribution of constitutive (COX-1) and inducible (COX-2) cyclooxygenase in postviral human liver cirrhosis: a possible role for COX-2 in the pathogenesis of liver cirrhosis. J Clin Pathol 2004;57:350–54.

    PubMed  CAS  Google Scholar 

  56. Cheng J, Imanishi H, Iijima H, et al. Expression of cyclooxygenase 2 and cytosolic phospholipase A(2) in the liver tissue of patients with chronic hepatitis and liver cirrhosis. Hepatol Res 2002;23:185–95.

    PubMed  CAS  Google Scholar 

  57. Waris G, Siddiqui A. Hepatitis C virus stimulates the expression of cyclooxygenase-2 via oxidative stress: role of prostaglandin E2 in RNA replication. J Virol 2005;79:9725–34.

    PubMed  CAS  Google Scholar 

  58. Planagumà A, Clària J, Miquel R, et al. The selective cyclooxygenase-2 inhibitor SC-236 reduces liver fibrosis by mechanisms involving non-parenchymal cell apoptosis and PPARgamma activation. FASEB J 2005;19:1120–2.

    PubMed  Google Scholar 

  59. Nanji AA, Miao L, Thomas P, et al. Enhanced cyclooxygenase-2 gene expression in alcoholic liver disease in the rat. Gastroenterology 1997;112:943–51.

    PubMed  CAS  Google Scholar 

  60. Yu J, Ip E, Dela Pena A, et al. COX-2 induction in mice with experimental nutritional steatohepatitis: Role as pro-inflammatory mediator. Hepatology 2006;43:826–36.

    PubMed  CAS  Google Scholar 

  61. Han C, Li G, Lim K, DeFrances MC, et al. Transgenic expression of cyclooxygenase-2 in hepatocytes accelerates endotoxin-induced acute liver failure. J Immunol 2008;181:8027–35.

    PubMed  CAS  Google Scholar 

  62. Paik YH, Kim JK, Lee JI, et al. Celecoxib induces hepatic stellate cell apoptosis through inhibition of Akt activation and suppresses hepatic fibrosis in rats. Gut 2009; DOI: 10.1136/gut.2008.157420.

    Google Scholar 

  63. Graupera M, García-Pagán JC, Abraldes JG, et al. Cyclooxygenase-derived products modulate the increased intrahepatic resistance of cirrhotic rat livers. Hepatology 2003;37:172–81.

    PubMed  CAS  Google Scholar 

  64. Yokoyama Y, Xu H, Kresge N, et al. Role of thromboxane A2 in early BDL-induced portal hypertension. Am J Physiol Gastrointest Liver Physiol 2003;284:G453–60.

    PubMed  CAS  Google Scholar 

  65. Graupera M, March S, Engel P, et al. Sinusoidal endothelial COX-1-derived prostanoids modulate the hepatic vascular tone of cirrhotic rat livers. Am J Physiol Gastrointest Liver Physiol 2005;288:G763–70.

    PubMed  CAS  Google Scholar 

  66. Gracia-Sancho J, Laviña B, Rodríguez-Vilarrupla A, García-Calderó H, Bosch J, García-Pagán JC. Enhanced vasoconstrictor prostanoid production by sinusoidal endothelial cells increases portal perfusion pressure in cirrhotic rat livers. J Hepatol 2007;47:220–7.

    PubMed  CAS  Google Scholar 

  67. Yokoyama Y, Kawai T, Kawai S, et al. Up-regulated thromboxane production in the rat liver with biliary obstruction does not contribute to promote hepatic injury. Shock 2008;29:688–91.

    PubMed  CAS  Google Scholar 

  68. Straus DS, Glass CK. Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Med Res Rev 2001; 21:185–210.

    PubMed  CAS  Google Scholar 

  69. Forman BM, Tontonoz P, Chen J, et al. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 1995;83: 803–12.

    PubMed  CAS  Google Scholar 

  70. Cernuda-Morollon E, Pineda-Molina E, Canada FJ, et al. 15-Deoxy-Delta 12,14-prostaglandin J2 inhibition of NF-kappaB-DNA binding through covalent modification of the p50 subunit. J Biol Chem 2001;276:35530–6.

    PubMed  CAS  Google Scholar 

  71. Gilroy DW, Lawrence T, Perretti M, et al. Inflammatory resolution: new opportunities for drug discovery. Nat Rev Drug Discov 2004;3:401–16.

    PubMed  CAS  Google Scholar 

  72. Bishop-Bailey D, Hla T. Endothelial cell apoptosis induced by the peroxisome proliferator-activated receptor (PPAR) ligand 15-deoxy-delta12, 14-prostaglandin J2. J Biol Chem 1999;274:17042–8.

    PubMed  CAS  Google Scholar 

  73. Kawahito Y, Kondo M, Tsubouchi Y, et al. 15-deoxy-12,14-PGJ2 induces synoviocyte apoptosis and suppresses adjuvant-induced arthritis in rats. J Clin Invest 2000;106:189–97.

    PubMed  CAS  Google Scholar 

  74. Maddox JF, Domsalski AC, Roth RA, et al. 15-deoxy prostaglandin J2 enhances allyl alcohol-induced toxicity in rat hepatocytes. Toxicol Sci 2004;77:290–8.

    PubMed  CAS  Google Scholar 

  75. Morrow JD, Awad JA, Boss HJ, et al. Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc Natl Acad Sci USA 1992;89:10721–5.

    PubMed  CAS  Google Scholar 

  76. Basu S. F2-isoprostanes in human health and diseases: from molecular mechanisms to clinical implications. Antioxid Redox Signal 2008;10:1405–34.

    PubMed  CAS  Google Scholar 

  77. Comporti M, Arezzini B, Signorini C, et al. Oxidative stress, isoprostanes and hepatic fibrosis. Histol Histopathol 2009;24:893–900.

    PubMed  CAS  Google Scholar 

  78. Moore K. Isoprostanes and the liver. Chem Phys Lipids 2004;128:125–33.

    PubMed  CAS  Google Scholar 

  79. Meagher EA, Barry OP, Burke A, et al. Alcohol-induced generation of lipid peroxidation products in humans. J Clin Invest 1999;104:805–13.

    PubMed  CAS  Google Scholar 

  80. Morrow JD, Awad JA, Kato T, et al. Formation of novel non-cyclooxygenase-derived prostanoids (F2-isoprostanes) in carbon tetrachloride hepatotoxicity. An animal model of lipid peroxidation. J Clin Invest 1992;90:2502–7.

    PubMed  CAS  Google Scholar 

  81. Samuelsson B, Dahlen SE, Lindgren JA, et al. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 1987;237:1171–6.

    PubMed  CAS  Google Scholar 

  82. Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 2001;294:1871–5.

    PubMed  CAS  Google Scholar 

  83. Werz O. 5-lipoxygenase: cellular biology and molecular pharmacology. Curr Drug Targets Inflamm Allergy 2002;1:23–44.

    PubMed  CAS  Google Scholar 

  84. Helgadottir A, Manolescu A, Thorleifsson G, et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet 2004;36:233–9.

    PubMed  CAS  Google Scholar 

  85. Hakonarson H, Thorvaldsson S, Helgadottir A, et al. Effects of a 5-lipoxygenase-activating protein inhibitor on biomarkers associated with risk of myocardial infarction: a randomized trial. JAMA 2005;293:2245–56.

    PubMed  CAS  Google Scholar 

  86. Drazen JM, Israel E, O’Byrne PM. Treatment of asthma with drugs modifying the leukotriene pathway. N Engl J Med 1999;340:197–206.

    PubMed  CAS  Google Scholar 

  87. Kuwabara K, Kiyoshi J, Hirokuni J, et al. Effects of the second-generation leukotriene B(4) receptor antagonist, LY293111Na, on leukocyte infiltration and collagen-induced arthritis in mice. Eur J Pharmacol 2000;402:275–85.

    PubMed  CAS  Google Scholar 

  88. Aiello RJ, Bourassa PA, Lindsey S, et al. Leukotriene B4 receptor antagonism reduces monocytic foam cells in mice. Arterioscler Thromb Vasc Biol 2002;22:443–9.

    PubMed  CAS  Google Scholar 

  89. Keppler D, Hubler M, Baumert T. Leukotrienes as mediators in diseases of the liver. Semin Liver Dis 1988;8:357–66.

    PubMed  CAS  Google Scholar 

  90. Titos E, Clària J, Bataller R, et al. Hepatocyte-derived cysteinyl leukotrienes modulate vascular tone in experimental cirrhosis. Gastroenterology 2000;119:794–805.

    PubMed  CAS  Google Scholar 

  91. Uemura M, Lehmann WD, Schneider W, et al. Enhanced urinary excretion of cysteinyl leukotrienes in patients with acute alcohol intoxication. Gastroenterology 2000;118:1140–8.

    PubMed  CAS  Google Scholar 

  92. Moore KP, Taylor GW, Maltby NH, et al. Increased production of cysteinyl leukotrienes in hepatorenal syndrome. J Hepatol 1990;11:263–71.

    PubMed  CAS  Google Scholar 

  93. Uemura M, Buchholz U, Kojima H, et al. Cysteinyl leukotrienes in the urine of patients with liver diseases. Hepatology 1994;20:804–12.

    PubMed  CAS  Google Scholar 

  94. Clària J, Titos E, Jiménez W, et al. Altered biosynthesis of leukotrienes and lipoxins and host defense disorders in patients with cirrhosis and ascites. Gastroenterology 1998;115:147–56.

    PubMed  Google Scholar 

  95. Tiegs G, Wendel A. Leukotriene-mediated liver injury. Biochem Pharmacol 1988;37:2569–73.

    PubMed  CAS  Google Scholar 

  96. Kawada N, Ueda N, Mizoguchi Y, et al. Increased 5-lipoxygenase activity in massive hepatic cell necrosis in the rat correlates with neutrophil infiltration. Hepatology 1992;16:462–8.

    PubMed  CAS  Google Scholar 

  97. Bailie MB, Dahm LJ, Peters-Golden M, et al. Leukotrienes and alpha-naphthylisothiocyanate-induced liver injury. Toxicology 1995;100:139–49.

    PubMed  CAS  Google Scholar 

  98. Shimazawa T, Nagai H, Koda A, et al. The effects of thromboxane A2 inhibitors (OKY-046 and ONO-3708) and leukotriene inhibitors (AA-861 and LY-171883) on CCl4-induced chronic liver injury in mice. Prostaglandins Leukot Essent Fatty Acids 1990;40:67–71.

    PubMed  CAS  Google Scholar 

  99. Graupera M, García-Pagán JC, Titos E, et al. 5-lipoxygenase inhibition reduces intrahepatic vascular resistance of cirrhotic rat livers: a possible role of cysteinyl-leukotrienes. Gastroenterology 2002;122:387–93.

    PubMed  CAS  Google Scholar 

  100. El-Swefy S, Hassanen SI. Improvement of hepatic fibrosis by leukotriene inhibition in cholestatic rats. Ann Hepatol 2009;8:41–9.

    PubMed  CAS  Google Scholar 

  101. Cuciureanu M, Căruntu ID, Păduraru O, et al. The protective effect of montelukast sodium on carbon tetrachloride induced hepatopathy in rat. Prostaglandins Other Lipid Mediat 2009;88:82–8.

    PubMed  CAS  Google Scholar 

  102. Muller D, Enderle GJ, Low O, et al. Bile ductular proliferation and altered leukotriene elimination in thioacetamide-induced fibrosis of rat liver. J Hepatol 1996;25:547–53.

    PubMed  CAS  Google Scholar 

  103. Titos E, Clària J, Planagumà A, et al. Inhibition of 5-Lipoxygenase induces cell growth arrest and apoptosis in rat Kupffer cells. Implications in liver fibrosis. FASEB J 2003;17:1745–7.

    PubMed  CAS  Google Scholar 

  104. Titos E, Clària J, Planagumà A, et al. Inhibition of 5-lipoxygenase-activating protein abrogates experimental liver injury: role of Kupffer cells. J Leukoc Biol 2005;78:871–8.

    PubMed  CAS  Google Scholar 

  105. Horrillo R, Planagumà A, González-Périz A, et al. Comparative protection against liver inflammation and fibrosis by a selective COX-2 inhibitor and a nonredox-type 5-LO inhibitor. J Pharmacol Exp Ther 2007;323:778–86.

    PubMed  CAS  Google Scholar 

  106. Farzaneh-Far R, Moore K. Cysteinyl-leukotrienes and the liver. Prostagladins Other Lipid Mediat 2003;72:35–50.

    CAS  Google Scholar 

  107. Matsui N, Fukuishi N, Fukuyama Y, et al. Protective effect of the 5-lipoxygenase inhibitor ardisiaquinone A on hepatic ischemia-reperfusion injury in rats. Planta Med 2005;71:717–20.

    PubMed  CAS  Google Scholar 

  108. Daglar G, Daglar G, Karaca T, et al. Effect of montelukast and MK-886 on hepatic ischemia-reperfusion injury in rats. J Surg Res 2009;153:31–8.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our research is supported by grants from the Ministerio de Ciencia e Innovación (SAF 09/08767). CIBERehd is funded by the Instituto de Salud Carlos III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Clària .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Clària, J., López-Parra, M., Titos, E., González-Périz, A. (2011). The Role of Inflammatory Mediators in Liver Failure. In: Ginès, P., Kamath, P., Arroyo, V. (eds) Chronic Liver Failure. Clinical Gastroenterology. Humana Press. https://doi.org/10.1007/978-1-60761-866-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-866-9_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-865-2

  • Online ISBN: 978-1-60761-866-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics