Skip to main content

High-Throughput Construction of ORF Clones for Production of the Recombinant Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 577))

Summary

Expression-ready cDNA clones, where the open reading frame (ORF) of the gene of interest is placed under the control of an appropriate promoter, are critical for functional characterization of the gene products. To create a resource of human gene products, we attempted to systematically convert original cDNA clones to expression-ready forms for recombinant proteins. For this purpose, we adopted a rare-cutting restriction enzyme-based system, the Flexi® cloning system, to construct ORF clones. Taking advantage of the fully sequenced cDNA clones we accumulated to date, a number of sets of Flexi® ORF clones in a 96-well format have been prepared. In this section, two methods for the preparation of Flexi® ORF clones in a 96-well format are described. A protocol for transferring ORFs between Flexi® vectors in a 96-well format is also described. We believe that the resultant clone set could be successfully used as a versatile reagent for functional characterization of human proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nomura N, Miyajima N, Sazuka T, et al. (1994) Prediction of the coding sequences of unidentified human genes. I. The coding sequences of 40 new genes (KIAA0001-KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1 DNA Res 1, 27–35.

    Article  PubMed  CAS  Google Scholar 

  2. Nagase T, Ishikawa K, Nakajima D, et al. (1997) Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro DNA Res 4, 141–150.

    Article  PubMed  CAS  Google Scholar 

  3. Nagase T, Ishikawa K, Suyama M, et al. (1998) Prediction of the coding sequences of unidentified human genes. XI. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro DNA Res 5, 277–286.

    Article  PubMed  CAS  Google Scholar 

  4. Okazaki N, Kikuno R, Ohara R, et al. (2002) Prediction of the coding sequences of mouse homologues of KIAA gene: I. The complete nucleotide sequences of 100 mouse KIAA-homologous cDNAs identified by screening of terminal sequences of cDNA clones randomly sampled from size-fractionated libraries DNA Res 9, 179–188.

    Article  PubMed  CAS  Google Scholar 

  5. Okazaki N, Kikuno R, Ohara R, et al. (2004) Prediction of the coding sequences of mouse homologues of KIAA gene: IV. The complete nucleotide sequences of 500 mouse KIAA-homologous cDNAs identified by screening of terminal sequences of cDNA clones randomly sampled from size-fractionated libraries DNA Res 11, 205–218.

    Article  PubMed  CAS  Google Scholar 

  6. Hara Y, Shimada K, Kohga H, Ohara O, Koga H. (2003) High-throughput production of recombinant antigens for mouse KIAA proteins in Escherichia coli: computational allocation of possible antigenic regions, and construction of expression plasmids of glutathione-S-transferase-fused antigens by an in vitro recombination-assisted method DNA Res 10, 129–136.

    Article  PubMed  CAS  Google Scholar 

  7. Koga H, Shimada K, Hara Y, et al. (2004) A comprehensive approach for establishment of the platform to analyze functions of KIAA proteins: generation and evaluation of anti-mKIAA antibodies Proteomics 4, 1412–1416.

    Article  PubMed  CAS  Google Scholar 

  8. Kikuno R, Nagase T, Nakayama M, et al. (2004) HUGE: a database for human KIAA proteins, a 2004 update integrating HUGEppi and ROUGE Nucleic Acids Res 32 Database issue, D502–D504.

    Article  PubMed  CAS  Google Scholar 

  9. Koga H, Yuasa S, Nagase T, et al. (2004) A comprehensive approach for establishment of the platform to analyze functions of KIAA proteins II: public release of inaugural version of InGaP database containing gene/protein expression profiles for 127 mouse KIAA genes/proteins DNA Res 11, 293–304.

    Article  PubMed  CAS  Google Scholar 

  10. Murakami M, Shimada K, Kawai M, Koga H. (2005) InCeP: intracellular pathway based on mKIAA protein-protein interactions DNA Res 12, 379–387.

    Article  PubMed  CAS  Google Scholar 

  11. Brizuela L, Richardson A, Marsischky G, Labaer J. (2002) The FLEXGene repository: exploiting the fruits of the genome projects by creating a needed resource to face the challenges of the post-genomic era Arch Med Res 33, 318–324.

    Article  PubMed  CAS  Google Scholar 

  12. Rual JF, Hill DE, Vidal M. (2004) ORFeome projects: gateway between genomics and omics Curr Opin Chem Biol 8, 20–25.

    Article  PubMed  CAS  Google Scholar 

  13. Temple G, Lamesch P, Milstein S, et al. (2006) From genome to proteome: developing expression clone resources for the human genome Hum Mol Genet 15 Spec No 1, R31–R43.

    Article  PubMed  CAS  Google Scholar 

  14. Nakajima D, Saito K, Yamakawa H, et al. (2005) Preparation of a Set of Expression-Ready Clones of Mammalian Long cDNAs Encoding Large Proteins by the ORF Trap Cloning Method DNA Res 12, 257–267.

    Article  PubMed  CAS  Google Scholar 

  15. Lang C, Schulze J, Mendel RR, Hansch R. (2006) HaloTag: a new versatile reporter gene system in plant cells J Exp Bot 57, 2985–2992.

    Article  PubMed  CAS  Google Scholar 

  16. Los GV, Wood K. (2007) The HaloTag: a novel technology for cell imaging and protein analysis Methods Mol Biol 356, 195–208.

    PubMed  CAS  Google Scholar 

  17. Zhang Y, So MK, Loening AM, Yao H, Gambhir SS, Rao J. (2006) HaloTag protein-mediated site-specific conjugation of bioluminescent proteins to quantum dots Angew Chem Int Ed Engl 45, 4936–4940.

    Article  PubMed  CAS  Google Scholar 

  18. Hata T, Nakayama M. (2007) Rapid single-tube method for small-scale affinity purification of polyclonal antibodies using HaloTag Technology J Biochem Biophys Methods 70, 679–682.

    Article  PubMed  CAS  Google Scholar 

  19. Blommel PG, Martin PA, Wrobel RL, Steffen E, Fox BG. (2006) High efficiency single step production of expression plasmids from cDNA clones using the Flexi Vector cloning system Protein Expr Purif 47, 562–570.

    Article  PubMed  CAS  Google Scholar 

  20. Nagase T, Yamakawa H, Tadokoro S, et al. (2008) Exploration of Human ORFeome: High-Throughput Preparation of ORF Clones and Efficient Characterization of Their Protein Products DNA Res 15, 137–149.

    Article  PubMed  CAS  Google Scholar 

  21. Gillen JR, Willis DK, Clark AJ. (1981) Genetic analysis of the RecE pathway of genetic recombination in Escherichia coli K-12 J Bacteriol 145, 521–532.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank T. Watanabe, M. Tamura, K. Yamada, E. Suzuki, C. Mori, and H. Kinoshita for their technical assistance. The Kazusa ORFeome Project of which this report is a part is organized by Dr. O. Ohara and Dr. T. Nagase (Kazusa DNA Research Institute). This work is supported in part by a grant from the Promega Corporation and by a special grant from the Chiba Prefectural Government for acceleration of the practical application of biotechnology.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yamakawa, H. (2009). High-Throughput Construction of ORF Clones for Production of the Recombinant Proteins. In: Koga, H. (eds) Reverse Chemical Genetics. Methods in Molecular Biology™, vol 577. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-232-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-232-2_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-231-5

  • Online ISBN: 978-1-60761-232-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics