Skip to main content

Characterization of Structural and Configurational Properties of DNA by Atomic Force Microscopy

  • Protocol
  • First Online:
Genome Instability

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1672))

Abstract

We describe a method to extract quantitative information on DNA structural and configurational properties from high-resolution topographic maps recorded by atomic force microscopy (AFM). DNA molecules are deposited on mica surfaces from an aqueous solution, carefully dehydrated, and imaged in air in Tapping Mode. Upon extraction of the spatial coordinates of the DNA backbones from AFM images, several parameters characterizing DNA structure and configuration can be calculated. Here, we explain how to obtain the distribution of contour lengths, end-to-end distances, and gyration radii. This modular protocol can be also used to characterize other statistical parameters from AFM topographies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Alessandrini A, Facci P (2005) AFM: a versatile tool in biophysics. Meas Sci Technol 16:R65–R92. doi:10.1088/0957-0233/16/6/R01

    Article  CAS  Google Scholar 

  2. Kalle W, Strappe P (2012) Atomic force microscopy on chromosomes, chromatin and DNA: a review. Micron 43:1224–1231. doi:10.1016/j.micron.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  3. Podgornik Rudolf (2011) Physics of DNA. http://www.fmf.uni-lj.si/~podgornik/download/physics-of-DNA-1.1.pdf

  4. Pinheiro AV, Han D, Shih WM, Yan H (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6:763–772. doi:10.1038/nnano.2011.187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rivetti C, Guthold M, Bustamante C (1996) Scanning force microscopy of DNA deposited onto mica: equilibration versus kinetic trapping studied by statistical polymer chain analysis. J Mol Biol 264:919–932. doi:10.1006/jmbi.1996.0687

    Article  CAS  PubMed  Google Scholar 

  6. Podestà A, Indrieri M, Brogioli D, Manning GS, Milani P, Guerra R, Finzi L, Dunlap D (2005) Positively charged surfaces increase the flexibility of DNA. Biophys J 89:2558–2563

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pastré D, Piétrement O, Fusil S, Landousy F, Jeusset J, David M-O, Hamon L, Le Cam E, Zozime A (2003) Adsorption of DNA to mica mediated by divalent counterions: a theoretical and experimental study. Biophys J 85:2507–2518. doi:10.1016/S0006-3495(03)74673-6

    Article  PubMed  PubMed Central  Google Scholar 

  8. Japaridze A, Vobornik D, Lipiec E, Cerreta A, Szczerbinski J, Zenobi R, Dietler G (2016) Toward an effective control of DNA’s submolecular conformation on a surface. Macromolecules 49:643–652. doi:10.1021/acs.macromol.5b01827

    Article  CAS  Google Scholar 

  9. Buzio R, Repetto L, Giacopelli F, Ravazzolo R, Valbusa U (2014) Symmetric curvature descriptors for label-free analysis of DNA. Sci Rep 4:6459. doi:10.1038/srep06459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bustamante C, Rivetti C (1996) Visualizing protein-nucleic acid interactions on a large scale with the scanning force microscope. Annu Rev Biophys Biomol Struct 25:395–429. doi:10.1146/annurev.bb.25.060196.002143

    Article  CAS  PubMed  Google Scholar 

  11. Valle F, Favre M, De Los RP, Rosa A, Dietler G (2005) Scaling exponents and probability distributions of DNA end-to-end distance. Phys Rev Lett 95:158105. doi:10.1103/PhysRevLett.95.158105

    Article  PubMed  Google Scholar 

  12. Fang Y, Spisz TS, Wiltshire T, D’Costa NP, Bankman IN, Reeves RH, Hoh JH (1998) Solid-state DNA sizing by atomic force microscopy. Anal Chem 70:2123–2129. doi:10.1021/ac971187o

    Article  CAS  PubMed  Google Scholar 

  13. Santos S, Stefancich M, Hernandez H, Chiesa M, Thomson NH (2012) Hydrophilicity of a single DNA molecule. J Phys Chem C 116:2807–2818. doi:10.1021/jp211326c

    Article  CAS  Google Scholar 

  14. Thomson NH, Santos S, Mitchenall LA, Stuchinskaya T, Taylor JA, Maxwell A (2014) DNA G-segment bending is not the sole determinant of topology simplification by type II DNA topoisomerases. Sci Rep 4:6158. doi:10.1038/srep06158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wiggins PA, van der Heijden T, Moreno-Herrero F, Spakowitz A, Phillips R, Widom J, Dekker C, Nelson PC (2006) High flexibility of DNA on short length scales probed by atomic force microscopy. Nat Nanotechnol 1:137–141. doi:10.1038/nnano.2006.63

    Article  CAS  PubMed  Google Scholar 

  16. Savelyev A, Materese CK, Papoian GA (2011) Is DNA’s rigidity dominated by electrostatic or nonelectrostatic interactions? J Am Chem Soc 133:19290–19293. doi:10.1021/ja207984z

    Article  CAS  PubMed  Google Scholar 

  17. Lia G, Indrieri M, Owen-Hughes T, Finzi L, Podesta A, Milani P, Dunlap D (2008) ATP-dependent looping of DNA by ISWI. J Biophotonics 1:280–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fang Y, Hoh JH, Spisz TS (1999) Ethanol-induced structural transitions of DNA on mica. Nucleic Acids Res 27:1943–1949. doi:10.1093/nar/27.8.1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Parker SCJ, Margulies EH, Tullius TD (2008) The relationship between fine scale DNA structure, GC content, and functional elements in 1% of the human genome. Genome Inform 20:199–211

    CAS  PubMed  Google Scholar 

  20. Knips A, Zacharias M (2015) Influence of a cis,syn-cyclobutane pyrimidine dimer damage on DNA conformation studied by molecular dynamics simulations. Biopolymers 103:215–222. doi:10.1002/bip.22586

    Article  CAS  PubMed  Google Scholar 

  21. García R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47:197. doi:10.1016/S0167-5729(02)00077-8

    Article  Google Scholar 

  22. Rivetti C, Codeluppi S (2001) Accurate length determination of DNA molecules visualized by atomic force microscopy: evidence for a partial B- to A-form transition on mica. Ultramicroscopy 87:55–66. doi:10.1016/S0304-3991(00)00064-4

    Article  CAS  PubMed  Google Scholar 

  23. Shi Y (1996) Statistical mechanics of the extensible and shearable elastic rod and of DNA. J Chem Phys 105:714–731. doi:10.1063/1.471927

    Article  CAS  Google Scholar 

  24. Kuwahara Y (1999) Muscovite surface structure imaged by fluid contact mode AFM. Phys Chem Miner 26:198–205. doi:10.1007/s002690050177

    Article  CAS  Google Scholar 

  25. Ostendorf F, Schmitz C, Hirth S, Kühnle A, Kolodziej JJ, Reichling M (2008) How flat is an air-cleaved mica surface? Nanotechnology 19:305705. doi:10.1088/0957-4484/19/30/305705

    Article  CAS  PubMed  Google Scholar 

  26. Thundat T, Allison DP, Warmack RJ, Brown GM, Jacobson KB, Schrick JJ, Ferrell TL (1992) Atomic force microscopy of DNA on mica and chemically modified mica. Scanning Microsc 6:911–918

    CAS  PubMed  Google Scholar 

  27. Bussiek M, Mücke N, Langowski J (2003) Polylysine-coated mica can be used to observe systematic changes in the supercoiled DNA conformation by scanning force microscopy in solution. Nucleic Acids Res 31:e137. doi:10.1093/nar/gng137

    Article  PubMed  PubMed Central  Google Scholar 

  28. Podesta A, Imperadori L, Colnaghi W, Finzi L, Milani P, Dunlap D (2004) Atomic force microscopy study of DNA deposited on poly L-ornithine-coated mica. J Microsc 215:236–240. doi:10.1111/j.0022-2720.2004.01372.x

    Article  CAS  PubMed  Google Scholar 

  29. Bustamante C, Vesenka J, Tang CL, Rees W, Guthold M, Keller R (1992) Circular DNA molecules imaged in air by scanning force microscopy. Biochemistry 31:22–26

    Article  CAS  PubMed  Google Scholar 

  30. Adamcik J, Berquand A, Mezzenga R (2011) Single-step direct measurement of amyloid fibrils stiffness by peak force quantitative nanomechanical atomic force microscopy. Appl Phys Lett 98:193701. doi:10.1063/1.3589369

    Article  Google Scholar 

  31. Usov I, Mezzenga R (2015) FiberApp: an open-source software for tracking and analyzing polymers, filaments, biomacromolecules, and fibrous objects. Macromolecules 48:1269–1280. doi:10.1021/ma502264c

    Article  CAS  Google Scholar 

  32. Sanchez-Sevilla A, Thimonier J, Marilley M, Rocca-Serra J, Barbet J (2002) Accuracy of AFM measurements of the contour length of DNA fragments adsorbed on mica in air and in aqueous buffer. Ultramicroscopy 92:151–158. doi:10.1016/S0304-3991(02)00128-6

    Article  CAS  PubMed  Google Scholar 

  33. Rivetti C (2009) A simple and optimized length estimator for digitized DNA contours. Cytom Part A 75:854–861. doi:10.1002/cyto.a.20781

    Article  Google Scholar 

  34. Gomez AI, Cruz M, Cruz-Orive LM (2016) On the precision of curve length estimation in the plane. Image Anal Stereol 35:1. doi:10.5566/ias.1412

    Article  Google Scholar 

Download references

Acknowledgments

We thank Francesca Borghi for support in AFM analysis. A.P. thanks the Dept. of Physics of the University of Milano for financial support under the project “Piano di Sviluppo dell’Ateneo per la Ricerca 2014. Linea B: Supporto per i giovani ricercatori”. Work in M.M-F lab is supported by AIRC (n.15631) and Telethon (GGP15227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Podestà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Meroni, A., Lazzaro, F., Muzi-Falconi, M., Podestà, A. (2018). Characterization of Structural and Configurational Properties of DNA by Atomic Force Microscopy. In: Muzi-Falconi, M., Brown, G. (eds) Genome Instability. Methods in Molecular Biology, vol 1672. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7306-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7306-4_37

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7305-7

  • Online ISBN: 978-1-4939-7306-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics