Skip to main content

In Vivo Bioluminescent Imaging of ATP-Binding Cassette Transporter-Mediated Efflux at the Blood–Brain Barrier

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1461))

Abstract

We provide a detailed protocol for imaging ATP-binding cassette subfamily G member 2 (ABCG2) function at the blood–brain barrier (BBB) of transgenic mice. d-Luciferin is specifically transported by ABCG2 found on the apical side of endothelial cells at the BBB. The luciferase–luciferin enzymatic reaction produces bioluminescence, which allows a direct measurement of ABCG2 function at the BBB. Therefore bioluminescence imaging (BLI) correlates with ABCG2 function at the BBB and this can be measured by administering luciferin in a mouse model that expresses luciferase in the brain parenchyma. BLI allows for a relatively low-cost alternative for studying transporter function in vivo compared to other strategies such as positron emission tomography. This method for imaging ABCG2 function at the BBB can be used to investigate pharmacokinetic inhibition of the transporter.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hartz AM, Bauer B (2010) Regulation of ABC transporters at the blood-brain barrier: new targets for CNS therapy. Mol Interv 10:293–304

    Article  CAS  PubMed  Google Scholar 

  2. Zhu L, Ramboz S, Hewitt D, Boring L, Grass DS, Purchio AF (2004) Non-invasive imaging of GFAP expression after neuronal damage in mice. Neurosci Lett 367:210–212

    Article  CAS  PubMed  Google Scholar 

  3. Vlaming ML, Lagas JS, Schinkel AH (2009) Physiological and pharmacological roles of ABCG2 (BCRP): recent findings in Abcg2 knockout mice. Adv Drug Deliv Rev 61:14–25

    Article  CAS  PubMed  Google Scholar 

  4. Allen JD, Brinkhuis RF, Wijnholds J, Schinkel AH (1999) The mouse Bcrp1/Mxr/Abcp gene: amplification and overexpression in cell lines selected for resistance to topotecan, mitoxantrone, or doxorubicin. Cancer Res 59:4237–4241

    CAS  PubMed  Google Scholar 

  5. Bakhsheshian J, Hall MD, Robey RW, Herrmann MA, Chen JQ, Bates SE, Gottesman MM (2013) Overlapping substrate and inhibitor specificity of human and murine ABCG2. Drug Metab Dispos 41:1805–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Robey RW, Honjo Y, Morisaki K, Nadjem TA, Runge S, Risbood M, Poruchynsly MS, Bates SE (2003) Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity. Br J Cancer 89:1971–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bakhsheshian J, Wei BR, Chang KE, Shukla S, Ambudkar SV, Simpson RM, Gottesman MM, Hall MD (2013) Bioluminescent imaging of drug efflux at the blood-brain barrier mediated by the transporter ABCG2. Proc Natl Acad Sci U S A 110:20801–20806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kannan P, John C, Zoghbi SS, Halldin C, Gottesman MM, Innis RB, Hall MD (2009) Imaging the function of P-glycoprotein with radiotracers: pharmacokinetics and in vivo applications. Clin Pharmacol Ther 86:368–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bignami A, Eng LF, Dahl D, Uyeda CT (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res 43:429–435

    Article  CAS  PubMed  Google Scholar 

  10. Dickie M (1975) Keeping records in biology of the laboratory Mouse. Dover Publications, New York, NY

    Google Scholar 

  11. Bowie LJ (1978) Synthesis of firefly luciferin and structural analogs. Methods Enzymol 57:15–28

    Article  CAS  Google Scholar 

  12. Allen JD, van Loevezijn A, Lakhai JM, van der Valk M, van Tellingen O, Reid G, Schellens JH, Koomen GJ, Schinkel AH (2002) Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther 1:417–425

    Article  CAS  PubMed  Google Scholar 

  13. Ozvegy-Laczka C, Hegedus T, Varady G, Ujhelly O, Schuetz JD, Varadi A, Kéri G, Orfi L, Német K, Sarkadi B (2004) High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol 65:1485–1495

    Article  PubMed  Google Scholar 

  14. Kannan P, Telu S, Shukla S, Ambudkar SV, Pike VW, Halldin C, Gottesman MM, Innis RB, Hall MD (2011) The “specific” P-glycoprotein inhibitor Tariquidar is also a substrate and an inhibitor for breast cancer resistance protein (BCRP/ABCG2). ACS Chem Neurosci 2:82–89

    Article  CAS  PubMed  Google Scholar 

  15. Agarwal S, Sane R, Gallardo JL, Ohlfest JR, Elmquist WF (2010) Distribution of gefitinib to the brain is limited by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)-mediated active efflux. J Pharmacol Exp Ther 334:147–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shepard RL, Cao J, Starling JJ, Dantzig AH (2003) Modulation of P-glycoprotein but not MRP1- or BCRP-mediated drug resistance by LY335979. Int J Cancer 103:121–125

    Article  CAS  PubMed  Google Scholar 

  17. Manaenko A, Chen H, Kammer J, Zhang JH, Tang J (2011) Comparison Evans Blue injection routes: intravenous versus intraperitoneal, for measurement of blood-brain barrier in a mice hemorrhage model. J Neurosci Methods 195:206–210

    Article  PubMed  Google Scholar 

  18. Morrey JD, Olsen AL, Siddharthan V, Motter NE, Wang H, Taro BS, Chen D, Ruffner D, Hall JO (2008) Increased blood-brain barrier permeability is not a primary determinant for lethality of West Nile virus infection in rodents. J Gen Virol 89:467–473

    Article  CAS  PubMed  Google Scholar 

  19. Aswendt M, Adamczak J, Couillard-Despres S, Hoehn M (2013) Boosting bioluminescence neuroimaging: an optimized protocol for brain studies. PLoS One 8:e55662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kadurugamuwa JL, Modi K, Coquoz O, Rice B, Smith S, Contag PR, Purchio T (2005) Reduction of astrogliosis by early treatment of pneumococcal meningitis measured by simultaneous imaging, in vivo, of the pathogen and host response. Infect Immun 73:7836–7843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kanzaki S, Fujioka M, Yasuda A, Shibata S, Nakamura M, Okano HJ, Ogawa K, Okano H (2012) Novel in vivo imaging analysis of an inner ear drug delivery system in mice: comparison of inner ear drug concentrations over time after transtympanic and systemic injections. PLoS One 7:e48480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Mr. George Leiman for editorial assistance. This research was supported by the Intramural Research Program of the National Institutes of Health (NIH), National Cancer Institute. Joshua Bakhsheshian is a NIH Medical Research Scholar. The Medical Research Scholars Program is a public–private partnership supported jointly by the NIH and contributions to the Foundation for the NIH from Pfizer, the Leona M. and Harry B. Helmsley Charitable Trust, the Howard Hughes Medical Institute, as well as other private donors (listed at www.fnih.org/work/programs-development/medicalresearch-scholars-program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. Gottesman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bakhsheshian, J., Wei, BR., Hall, M.D., Simpson, R.M., Gottesman, M.M. (2016). In Vivo Bioluminescent Imaging of ATP-Binding Cassette Transporter-Mediated Efflux at the Blood–Brain Barrier. In: Kim, S. (eds) Bioluminescence. Methods in Molecular Biology, vol 1461. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3813-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3813-1_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3811-7

  • Online ISBN: 978-1-4939-3813-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics