Skip to main content

Identifying Nuclear Protein–Protein Interactions Using GFP Affinity Purification and SILAC-Based Quantitative Mass Spectrometry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1188))

Abstract

Many cellular proteins assemble into macromolecular protein complexes. Therefore, identifying protein–protein interactions (PPIs) is essential to gain insight into the function of proteins. Recently established quantitative mass spectrometry-based techniques have significantly improved the unbiased search for PPIs. In this chapter, we describe a single-step GFP affinity purification method combined with SILAC-based quantitative mass spectrometry that can be used to identify nuclear PPIs in mammalian cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    Article  CAS  PubMed  Google Scholar 

  2. Gingras AC, Gstaiger M, Raught B et al (2007) Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8: 645–654

    Article  CAS  PubMed  Google Scholar 

  3. Altelaar AF, Heck AJ (2012) Trends in ultrasensitive proteomics. Curr Opin Chem Biol 16:206–213

    Article  CAS  PubMed  Google Scholar 

  4. Vermeulen M, Hubner NC, Mann M (2008) High confidence determination of specific protein-protein interactions using quantitative mass spectrometry. Curr Opin Biotechnol 19:331–337

    Article  CAS  PubMed  Google Scholar 

  5. Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  6. Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11: 1475–1489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Hubner NC, Bird AW, Cox J et al (2010) Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J Cell Biol 189:739–754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hubner NC, Mann M (2011) Extracting gene function from protein-protein interactions using Quantitative BAC InteraCtomics (QUBIC). Methods 53:453–459

    Article  CAS  PubMed  Google Scholar 

  9. Nielsen ML, Vermeulen M, Bonaldi T et al (2008) Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nat Methods 5:459–460

    Article  CAS  PubMed  Google Scholar 

  10. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2: 1896–1906

    Article  CAS  PubMed  Google Scholar 

  11. Cox J, Matic I, Hilger M et al (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4:698–705

    Article  CAS  PubMed  Google Scholar 

  12. Wisniewski JR, Zougman A, Nagaraj N et al (2009) Universal sample preparation method for proteome analysis. Nat Methods 6: 359–362

    Article  CAS  PubMed  Google Scholar 

  13. Lee KH, Chuang CK, Guo SF et al (2012) Simple and efficient derivation of mouse embryonic stem cell lines using differentiation inhibitors or proliferation stimulators. Stem Cells Dev 21:373–383

    Article  CAS  PubMed  Google Scholar 

  14. Zhang P, Wu X, Hu C et al (2012) Rho kinase inhibitor Y-27632 and Accutase dramatically increase mouse embryonic stem cell derivation. In Vitro Cell Dev Biol Anim 48:30–36

    Article  PubMed  Google Scholar 

  15. Poser I, Sarov M, Hutchins JR et al (2008) BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Methods 5:409–415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Spruijt CG, Bartels SJ, Brinkman AB et al (2010) CDK2AP1/DOC-1 is a bona fide subunit of the Mi-2/NuRD complex. Mol Biosyst 6:1700–1706

    Article  CAS  PubMed  Google Scholar 

  17. Rothbauer U, Zolghadr K, Muyldermans S et al (2008) A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Mol Cell Proteomics 7:282

    Article  CAS  PubMed  Google Scholar 

  18. Paul FE, Hosp F, Selbach M (2011) Analyzing protein-protein interactions by quantitative mass spectrometry. Methods 54:387

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank members of the Vermeulen group and Nina Hubner for critical reading of the manuscript and fruitful discussions. Work in the Vermeulen group is supported by grants from the Netherlands Organisation for Scientific Research (VIDI and Cancer Genomics Centre (CGC)) and the Dutch Cancer Society (KWF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiel Vermeulen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Baymaz, H.I., Spruijt, C.G., Vermeulen, M. (2014). Identifying Nuclear Protein–Protein Interactions Using GFP Affinity Purification and SILAC-Based Quantitative Mass Spectrometry. In: Warscheid, B. (eds) Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). Methods in Molecular Biology, vol 1188. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1142-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1142-4_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1141-7

  • Online ISBN: 978-1-4939-1142-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics