Skip to main content

Salvage of Failed Protein Targets by Reductive Alkylation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1140))

Abstract

The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ferré-D’Amaré AR, Burley SK (1994) Use of dynamic light scattering to assess crystallizability of macromolecules and macromolecular assemblies. Structure 2:357–359

    Article  PubMed  Google Scholar 

  2. Dong A, Xu X, Edwards AM et al (2007) In situ proteolysis for protein crystallization and structure determination. Nat Methods 4:1019–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Derewenda ZS (2004) Rational protein crystallization by mutational surface engineering. Structure 12:529–535

    Article  CAS  PubMed  Google Scholar 

  4. Kim Y, Quartey P, Li H et al (2008) Large-scale evaluation of protein reductive methylation for improving protein crystallization. Nat Methods 5:853–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D’Arcy A, Stihle M, Kostrewa D et al (1999) Crystal engineering: a case study using the 24 kDa fragment of the DNA gyrase B subunit from Escherichia coli. Acta Crystallogr D Biol Crystallogr 55:1623–1625

    Article  PubMed  Google Scholar 

  6. Rypniewski WR, Holden HM, Rayment I (1993) Structural consequences of reductive methylation of lysine residues in hen egg white lysozyme: an X-ray analysis at 1.8-A resolution. Biochemistry 32:9851–9858

    Article  CAS  PubMed  Google Scholar 

  7. Means GE, Feeney RE (1990) Chemical modifications of proteins: history and applications. Bioconjug Chem 1:2–12

    Article  CAS  PubMed  Google Scholar 

  8. Rayment I (1997) Reductive alkylation of lysine residues to alter crystallization properties of proteins. Methods Enzymol 276:171–179

    Article  CAS  PubMed  Google Scholar 

  9. Rayment I, Rypniewski WR, Schmidt-Base K et al (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58

    Article  CAS  PubMed  Google Scholar 

  10. Derewenda ZS, Vekilov PG (2006) Entropy and surface engineering in protein crystallization. Acta Crystallogr D Biol Crystallogr 62:116–124

    Article  PubMed  Google Scholar 

  11. Sledz P, Zheng H, Murzyn K et al (2010) New surface contacts formed upon reductive lysine methylation: improving the probability of protein crystallization. Protein Sci 19:1395–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Walter TS, Meier C, Assenberg R et al (2006) Lysine methylation as a routine rescue strategy for protein crystallization. Structure 14:1617–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schubot FD, Waugh DS (2004) A pivotal role for reductive methylation in the de novo crystallization of a ternary complex composed of Yersinia pestis virulence factors YopN, SycN and YscB. Acta Crystallogr D Biol Crystallogr 60:1981–1986

    Article  PubMed  Google Scholar 

  14. Shaw N, Cheng C, Tempel W et al (2007) (NZ)CH…O contacts assist crystallization of a ParB-like nuclease. BMC Struct Biol 7:46

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kobayashi M, Kubota M, Matsuura Y (1999) Crystallization and improvement of crystal quality for X-ray diffraction of maltooligosyl trehalose synthase by reductive methylation of lysine residues. Acta Crystallogr D Biol Crystallogr 55:931–933

    Article  CAS  PubMed  Google Scholar 

  16. Fan Y, Joachimiak A (2010) Enhanced crystal packing due to solvent reorganization through reductive methylation of lysine residues in oxidoreductase from Streptococcus pneumoniae. J Struct Funct Genomics 11:101–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Means GE (1977) Reductive alkylation of amino groups. Methods Enzymol 47:469–478

    Article  CAS  PubMed  Google Scholar 

  18. Zhang M, Thulin E, Vogel HJ (1994) Reductive methylation and pKa determination of the lysine side chains in calbindin D9k. J Protein Chem 13:527–535

    Article  CAS  PubMed  Google Scholar 

  19. Zhang M, Vogel HJ (1993) Determination of the side chain pKa values of the lysine residues in calmodulin. J Biol Chem 268:22420–22428

    Article  CAS  PubMed  Google Scholar 

  20. Kim Y, Dementieva I, Zhou M et al (2004) Automation of protein purification for structural genomics. J Struct Funct Genomics 5:111–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Means GE, Feeney RE (1995) Reductive alkylation of proteins. Anal Biochem 224:1–16

    Article  CAS  PubMed  Google Scholar 

  22. Anashkina A, Kuznetso E, Esipova N et al (2007) Comprehensive statistical analysis of residues interaction specificity at protein–protein interfaces. Proteins 67:1060–1077

    Article  CAS  PubMed  Google Scholar 

  23. Glaser F, Steinberg DM, Vakser IA et al (2001) Residue frequencies and pairing preferences at protein–protein interfaces. Proteins 43:89–102

    Article  CAS  PubMed  Google Scholar 

  24. Juers DH, Matthews BW (2001) Reversible lattice repacking illustrates the temperature dependence of macromolecular interactions. J Mol Biol 311:851–862

    Article  CAS  PubMed  Google Scholar 

  25. Magalhaes A, Maigret B, Hoflack J et al (1994) Contribution of unusual arginine–arginine short-range interactions to stabilization and recognition in proteins. J Protein Chem 13:195–215

    Article  CAS  PubMed  Google Scholar 

  26. Wang J, Dauter M, Alkire R et al (2007) Triclinic lysozyme at 0.65 Å resolution. Acta Crystallogr D Biol Crystallogr 63:1254–1268

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank all members of the Structural Biology Center and Midwest Center for Structural Genomics at Argonne National Laboratory for their help in conducting these experiments. This work was supported by National Institutes of Health Grant number GM GM094585, Contract numbers HHSN272200700058C and HHSN272201200026C and by the US Department of Energy, Office of Biological and Environmental Research, under contract DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Joachimiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tan, K. et al. (2014). Salvage of Failed Protein Targets by Reductive Alkylation. In: Anderson, W.F. (eds) Structural Genomics and Drug Discovery. Methods in Molecular Biology, vol 1140. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0354-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0354-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-0353-5

  • Online ISBN: 978-1-4939-0354-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics