Skip to main content

Hypothalamic Mechanisms and the Cardiovascular Response to Stress

  • Chapter
Book cover Central Neural Mechanisms in Cardiovascular Regulation

Abstract

Stress is thought to contribute to a wide variety of human disease states. Foremost among these are cardiovascular disorders such as hypertension, cardiac arrhythmia, angina, myocardial infarction, and even sudden death. Nonetheless, we know little about the neural circuitry responsible for integrating the autonomic “stress response” above the level of the medulla-pons, and even less about the neuropharmacology of these higher pathways. The clarification and extension of existing data regarding central nervous system (CNS) mechanisms controlling the physiological and behavioral response to stress might suggest new strategies for its better understanding and control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams VC, Hilton SM, Zbrozyna A (1960): Active muscle vasodilation by stimulation of the brain stem: its significance in the defence reaction. J Physiol Lond 154:491–513

    Google Scholar 

  • Abrahams VC, Hilton SM, Zbrozyna A (1964): The role of active muscle vasodilation in the alerting stage of the defense reaction. J Physiol 171:189–202

    Google Scholar 

  • Abshire VM, Hankins KD, Roehr KE, DiMicco JA (1988): Injection of L-allylglycine into the posterior hypothalamus in rats causes decreases in local GABA which correlate with increases in heart rate. Neuropharmacology 27:1171–1177

    Article  Google Scholar 

  • Al Maskati HA, Zbrozyna AW (1989): Cardiovascular and motor components of the defense reaction elicited in rats by electrical and chemical stimulation of the amygdala. J Auton Nerv Syst 28:127–132

    Article  Google Scholar 

  • Anderson JA, DiMicco JA (1990): Effect of local inhibition of GABA uptake in the dorsomedial hypothalamus on extracellular levels of GABA and on stress-induced tachycardia: A study using microdialysis. J Pharmacol Exp Ther 255:1399–1407

    Google Scholar 

  • Audi EA, Graeff EG (1987): GABAA receptors in the midbrain central grey mediate the anti-aversive action of GABA. Eur J Pharmacol 135:225–229

    Article  Google Scholar 

  • Azevedo AD, Hilton SM, Timms RJ (1979): The defense reaction elicited by midbrain and hypothalamic stimulation in the rabbit. J Physiol 301:56–57P

    Google Scholar 

  • Bandler R (1982): Induction of ‘rage’ following microinjections of glutamate into midbrain but not hypothalamus of cats. Neurosci Lett 30:183–188

    Article  Google Scholar 

  • Bandler R, Carrive P (1988): Integrated defense reaction elicited by excitatory amino acid microinjection in the midbrain periaqueductal grey region of the unrestrained cat. Brain Res 439:95–106

    Article  Google Scholar 

  • Bandler R, DePaulis A (1988): Elicitation of intraspecific defense reactions in the rat from midbrain periaqueductal grey by microinjection of kainic acid, without neurotoxic effects. Neurosci Lett 88:291–296

    Article  Google Scholar 

  • Bard P (1928): A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am J Physiol 84:490–515

    Google Scholar 

  • Barron BA, Van Loon GR (1989): Role of the sympathoadrenomedullary system in cardiovascular response to stress in rats. J Auton Nerv Syst 28:179–188

    Article  Google Scholar 

  • Bauer RM, Vela MB, Simon T, Waldrop TG (1988): A GABAergic mechanism in the posterior hypothalamus modulates baroreflex bradycardia. Brain Res Bull 20:633–641

    Article  Google Scholar 

  • Berk ML, Finkelstein JA (1981): Afferent projections to the preoptic area and hypothalamic regions in the rat brain. Neuroscience 6:1601–1624

    Article  Google Scholar 

  • Bernardis LL, Bellinger LL (1987): The dorsomedial hypothalamic nucleus revisited: An update. Brain Res Rev 12:321–381

    Article  Google Scholar 

  • Bilski AJ, Halliday SE, Fitzgerald JD, Wale JL (1983): The pharmacology of a beta2-selective adrenoceptor antagonist (ICI 118,551). J Cardiovasc Pharmacol 5:430–437

    Article  Google Scholar 

  • Brandao ML, DiScala G, Bouchet MJ, Schmitt P (1986): Escape behavior produced by blockade of glutamic acid decarboxylase (GAD) in mesencephalic central grey or medial hypothalamus. Pharmacol Biochem Behav 24:497–501

    Article  Google Scholar 

  • Brandao ML, Tomaz C, Leao Borges PC, Coimbra NC, Bagri A (1988): Defense reactions induced by microinjections of bicuculline into the inferior colliculus. Physiol Behav 44:361–365

    Article  Google Scholar 

  • Callahan MF, Kirby RF, Cunningham JT, Eskridge-Sloop SI, Johnson AK, McCarty R, Gruber KA (1989): Central oxytocin systems may mediate a cardiovascular response to acute stress in rats. Am J Physiol 256:H1369–H1377

    Google Scholar 

  • Cannon WB, Britton SW (1925): Studies on the conditions of activity in endocrine glands. XV. Pseudaffective medulliadrenal secretion. Am J Physiol 72:283–294

    Google Scholar 

  • Caraffa-Braga E, Granata L, Pinotti O (1973): Changes in blood flow distribution during acute emotional stress in dogs. Pflügers Arch 339:203–216

    Article  Google Scholar 

  • Carrive P, Bandler R, Dampney RAL (1989a): Somatic and autonomic integration in the midbrain of the unanesthetized decerebrate cat: A distinctive pattern evoked by excitation of neurones in the subtentorial portion of the midbrain periaqueductal grey. Brain Res 483:251–258

    Article  Google Scholar 

  • Carrive P, Bandler R, Dampney RAL (1989b): Viscerotopic control of regional vascular beds by discrete groups of neurones within the midbrain periaqueductal grey. Brain Res 493:385–390

    Article  Google Scholar 

  • Carrive P, Dampney RAL, Bandler R (1987): Excitation of neurones in a restricted portion of the periaqueductal grey elicits both behavioral and cardiovascular components of the defense reaction in the unanesthetized decerebrate cat. Neurosci Lett 81:273–278

    Article  Google Scholar 

  • Cechetto DF, Saper CB (1988): Neurochemical organization of the hypothalamic projection to the spinal cord in the rat. J Comp Neurol 272:579–604

    Article  Google Scholar 

  • Clark BJ (1982): Beta adrenoceptor blocking agents: Are pharmacologic differences relevant? Am Heart J 104:334–346

    Article  Google Scholar 

  • Collingridge GL, Lester RA (1989): Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 40:143–210

    Google Scholar 

  • Conahan ST, Vogel W (1986): The effect of diazepam administration on heart rate and mean blood pressure in resting and stressed conscious rats. Res Commun Chem Pathol Pharmacol 53:301–317

    Google Scholar 

  • Corda MG, Biggio G (1986): Pro-conflict effect of GABA receptor complex antagonists. Reversal by diazepam. Neuropharmacology 25:541–544

    Article  Google Scholar 

  • Corda MG, Blaker WD, Mendelson WB, Guidotti A, Costa E (1983): Beta-carbolines enhance shock-induced suppression of drinking in rats. Proc Natl Acad Sci (USA) 80:2072–2076

    Article  Google Scholar 

  • Cruickshank JM (1980): The clinical importance of cardioselectivity and lipophilicity in beta blockers. Am Heart J 2:160–178

    Article  Google Scholar 

  • Darlington DN, Miyamoto M, Keil LC, Dallman MF (1989): Paraventricular stimulation with glutamate elicits bradycardia and pituitary responses. Am J Physiol 256:R112–R119

    Google Scholar 

  • DePaulis A, Bandler R, Vergnes M (1989): Characterization of pretentorial periaqueductal grey matter neurons mediating intraspecific defensive behaviors in the rat by microinjection of kainic acid. Brain Res 486:121–132

    Article  Google Scholar 

  • DePaulis A, Vergnes M (1986): Elicitation of intraspecific defensive behaviors in the rat by microinjection of picrotoxin, a GABA antagonist, into the midbrain periaqueductal grey matter. Brain Res 367:87–95

    Article  Google Scholar 

  • DiMicco JA (1982): Blockade of forebrain GABA receptors and reflex activation of the cardiac vagus in anesthetized cats. J Pharmacol Exp Ther 223:654–661

    Google Scholar 

  • DiMicco JA, Abshire VM (1987): Evidence for GABAergic inhibition of a hypothalamic sympthoexcitatory mechanism in anesthetized rats. Brain Res 402:1–10

    Article  Google Scholar 

  • DiMicco JA, Abshire VM, Hankins KD, Sample RHB, Wible JH Jr (1986): Microinjection of GABA antagonists into posterior hypothalamus elevates heart rate in anesthetized rats. Neuropharmacology 25:1063–1066

    Article  Google Scholar 

  • DiScala G, Sandner G (1989): Conditioned place aversion produced by microinjections of semicarbazide into the periaqueductal grey of the rat. Brain Res 483:91–97

    Article  Google Scholar 

  • DiScala G, Schmitt P, Karli P (1984): Flight induced by infusion of bicuculline methiodide into periventricular structures. Brain Res 309:199–207

    Article  Google Scholar 

  • Diz DI, Jacobowitz DM (1983): Cardiovascular effects of intrahypothalamic injections of alpha-melanocyte stimulating hormone. Brain Res 270:265–272

    Article  Google Scholar 

  • Djojosugito AM, Folkow B, Kylstra PH, Lisander B, Tuttle RS (1970): Differential interaction between the hypothalamic defense reaction and the baroreceptor reflexes. I. Effects on heart rate and regional flow resistance. Acta Physiol Scand 78:376–385

    Article  Google Scholar 

  • Eliasson S, Folkow B, Lindgren P, Uvnas B (1951): Activation of sympathetic vasodilator nerves to the skeletal muscles in the cat by hypothalamic stimulation. Acta Physiol Scand 23:333–351

    Article  Google Scholar 

  • Eliasson S, Lindgren P, Uvnas B (1952): Representation in the hypothalamus and the motor cortex of the dog of the sympathetic vasodilator outflow to the skeletal muscles. Acta Physiol Scand 27:18–37

    Google Scholar 

  • Enoch DM, Kerr FWL (1967): Hypothalamic vasopressor and vesicopressor pathways. Arch Neurol 16:307–320

    Article  Google Scholar 

  • Feuerstein G, Adelberg SA, Kopin IJ, Jacobowitz DM (1982): Hypothalamic sites for cardiovascular and sympathetic modulation by prostaglandin E2. Brain Res 231:335–342

    Article  Google Scholar 

  • File SE (1987): The contribution of behavioral studies to the neuropharmacology of anxiety. Neuropharmacology 26:877–886

    Article  Google Scholar 

  • File SE, Baldwin HA (1987): Effects of Beta-carbolines in animal models of anxiety. Brain Res Bull 19:293–299

    Article  Google Scholar 

  • Gelsema AJ, Roe MJ, Calaresu FR (1989): Neurally mediated cardiovascular responses to stimulation of cell bodies in the hypothalamus of the rat. Brain Res 482:67–77

    Article  Google Scholar 

  • Goodchild AK, Dampney RAL, Bandler R (1982): A method for evoking physiological responses by stimulation of cell bodies but not axons of passage within a localized region of the central nervous system. J Neurosci Meth 6:351–363

    Article  Google Scholar 

  • Granata AR, Numao Y, Kumada M, Reis DJ (1986): A1 noradrenergic neurons tonically inhibit sympathoexcitatory neurons of C1 area in rat brain. Brain Res 377:127–146

    Article  Google Scholar 

  • Gue M, Bueno L (1986): Diazepam and muscimol blockade of the gastrointestinal motor disturbances induced by acute stress in dogs. Eur J Pharmacol 131:123–127

    Article  Google Scholar 

  • Haywood JR, Shaffer RA, Fastenow C, Fink GD, Brody MJ (1981): Regional blood flow measurement with pulsed Doppler flowmeter in conscious rat. Am J Physiol 241:H273–278

    Google Scholar 

  • Hess WR, Brugger M (1943): Das subkortikale Zentrum der affektivien Abwehrreaktion. Helv Physiol Pharmacol Acta 1:33–52

    Google Scholar 

  • Hilton SM (1979): The defense reaction as a paradigm for cardiovascular control. In: Integrative Functions of the Autonomic Nervous System, Brooks C McC, Koizumi K, Sato A, eds. Tokyo: University of Tokyo Press

    Google Scholar 

  • Hilton SM, Marshall JM, Timms RJ (1983): Ventral medullary relay neurones in the pathway from the defence areas of the cat and their effect on blood pressure. J Physiol 345:149–166

    Google Scholar 

  • Hilton SM, Redfern WS (1986): A search for brain stem groups integrating the defence reaction in the rat. J Physiol 378:213–228

    Google Scholar 

  • Hilton SM, Zbrozyna AW(1963): Amygdaloid region for defence reactions and its efferent pathway to the brain stem. J Physiol 165:160–173

    Google Scholar 

  • Honore T, Davies SN, Dreier J, Fletcher EJ, Jacobsen P, Lodge D, Nielsen FE (1988): Quinoxalinediones: Potent competitive non-NMDA glutamate receptor antagonists. Science 241:701–703

    Article  Google Scholar 

  • Hubbard JW, Cox RH, Sanders BJ, Lawler JE (1986): Changes in cardiac output and vascular resistance during behavioral stress in the rat. Am J Physiol 251:R82–R90

    Google Scholar 

  • Hunsperger RW (1956): Affektreaktionen auf elektrische Reizung im Himstamm der Katze. Helv Physiol Pharmacol Acta 14:70–92

    Google Scholar 

  • Insel TR, Ninan FT, Aloi J, Jimerson DC, Skolnick P, Paul SM (1984): A benzodiazepine receptor-mediated model of anxiety. Arch Gen Psychiatry 41:741–750

    Article  Google Scholar 

  • Iwata J, Chida K, LeDoux JE (1987): Cardiovascular responses elicited by stimulation of neurons in the central amygdaloid nucleus in awake but not in anesthetized rats resemble conditioned emotional responses. Brain 418:183–188

    Article  Google Scholar 

  • Kapusta DR, Knardahl S, Koepke JP, Johnson AK, DiBona GF (1989): Selective central alpha2 adrenoceptor control of regional hemodynamic responses to air jet stress in conscious spontaneously hypertensive rats. J Hypertens 7:189–194

    Article  Google Scholar 

  • Karplus JP, Kreidl A (1910): Gehirn und sympathicus. II. Mitteilung. Ein Sympathicuszentrum in dem Zwischenhirn. Pflügers Arch 135:401–416

    Article  Google Scholar 

  • Kessler JP, Cherkaoui N, Catalin D, Jean A (1990): Swallowing responses induced by microinjection of glutamate and glutamate agonists into the nucleus tractus solitarius of ketamine anesthetized rats. Exp Brain Res 83:151–158

    Article  Google Scholar 

  • Kirby RF, Callahan MF, McCarty R, Johnson AK (1989): Cardiovascular and sympathetic nervous system response to an acute stressor in borderline hypertensive rats (BHR). Physiol Behav 46:309–313

    Article  Google Scholar 

  • Koepke JP, Jones S, DiBona GF (1986): Hypothalamic beta2-adrenoceptor control of renal sympathetic nerve activity and urinary sodium excretion in conscious, spontaneously hypertensive rats. Circ Res 58:241–248

    Google Scholar 

  • Koepke JP, Jones S, DiBona GF (1987): Alpha-2 adrenoceptors in amygdala control renal sympathetic nerve activity and renal function in conscious spontaneously hypertensive rats. Brain Res 404:80–88

    Article  Google Scholar 

  • Konig JFR, Klippel RA (1963): The Rat Brain, A Stereotaxic Atlas of the Forebrain and Lower Parts of the Brainstem Baltimore: Williams and Wilkins

    Google Scholar 

  • Kovacs KJ, Makara GB (1990): Partial deafferentation of the hypothalamic paraventricular nucleus: Effect on the stress or adrenalectomy-induced ACTH secretion. Neuroendocrinol Lett 12:383–389

    Google Scholar 

  • Kurosawa M, Sato A, Swenson RS, Takahashi Y (1986): Sympatho-adrenal medullary functions in response to intracerebroventricularly injected corticotropin releasing factor in anesthetized rats. Brain Res 367:250–257

    Article  Google Scholar 

  • LeDoux JE, Iwata J, Cicchetti P, Reis DJ (1988): Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci 8:2517–2529

    Google Scholar 

  • LeDoux JE, Thompson ME, Iadecola C, Tucker LW, Reis DJ (1983): Local cerebral blood flow increases during auditory and emotional processing in the conscious rat. Science 221:576–578

    Article  Google Scholar 

  • Lenz HJ, Raedler A, Greten H, Brown MR (1987): CRF initiates biological actions within the brain that are observed in response to stress. Am J Physiol 252:R34–R39

    Google Scholar 

  • Lipski J, Bellingham MC, West MJ, Pilowsky P (1988): Limitations of the technique of pressure microinjection of excitatory amino acids for evoking responses from localized regions of the CNS. J Neurosci Methods 26:169–179

    Article  Google Scholar 

  • Lisa M, Marmo E, Wible JH Jr, DiMicco JA (1989): Injection of muscimol into posterior hypothalamus blocks stress-induced tachycardia. Am J Physiol 257:R246–R251

    Google Scholar 

  • Luiten PGM, Ter Horst GJ, Karst H, Steffens AB (1985): The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord. Brain Res 329:374–378

    Article  Google Scholar 

  • Lundin S, Thoren P (1982): Renal function and sympathetic activity during mental stress in normotensive and spontaneously hypertensive rats. Acta Physiol Scand 115:115–124

    Article  Google Scholar 

  • Martin DS, Segura T, Haywood JR (1991): Cardiovascular responses to bicuculline in the paraventricular nucleus of the rat. Hypertension 18:48–55

    Google Scholar 

  • McCarty R (1985): Cardiovascular responses to acute footshock stress in adult and aged Fischer 344 male rats. Neurobiol Aging 6:47–50

    Article  Google Scholar 

  • Monaghan DT, Cotman CW (1982): The distribution of [3H]-kainic acid binding sites in rat central nervous system as determined by autoradiography. Brain Res 252:91–100

    Article  Google Scholar 

  • Monaghan DT, Cotman CW (1985): Distribution of N-methyl-D-aspartate-sensitive L-[3H]-glutamate binding sites in rat brain. J Neurosci 5:2909–2919

    Google Scholar 

  • Mugnaini E, Oertel WH (1985): An atlas of the distribution of GABAergic neurons and termminals in the rat CNS as revealed by GAD immunohistochemistry. Handbook of Chemical Neuroanatomy 4:436–608

    Google Scholar 

  • Ninan PT, Insel TM, Cohen RM, Cook JC, Skolnick P, Paul SM (1982): Benzodiazepine receptor-mediated experimental “anxiety” in primates. Science 218:1332–1334

    Article  Google Scholar 

  • Ondo JG, Wheeler DD, Dom RM (1988): Hypothalamic site of action for NMDA on LH secretion. Life Sci 43:2283–2286

    Article  Google Scholar 

  • Oppenheimer SM, Cechetto DF (1990): Cardiac chronotropic organization of the rat insular cortex. Brain Res 533:66–72

    Article  Google Scholar 

  • Pagani FD, DiMicco JA, Hamilton BL, Dias Souza J, Schmidt B, Gillis RA (1987): Stress-induced changes in parasympathetic function are mimicked by blocking CNS GABA in the cat. Neuropharmacology 26:155–160

    Article  Google Scholar 

  • Paxinos G, Watson C (1986): The Rat Brain in Stereotaxic Coordinates (2nd ed). New York: Academic Press

    Google Scholar 

  • Pellegrino LJ, Pellegrino AS, Cushman AJ (1979): Stereotaxic Atlas of the Rat Brain (2nd ed). New York: Plenum

    Google Scholar 

  • Rainbow TC, Wieczorek CM, Halpain S (1984): Quantitative autoradiography of binding sites for [3H]-AMPA, a structural analog of glutamic acid. Brain Res 309:173–177

    Article  Google Scholar 

  • Ray A, Henke PG, Sullivan RM (1987): The central amygdala and immobilization stress-induced gastric pathology in rats: Neurotensin and dopamine. Brain Res 409:398–402

    Article  Google Scholar 

  • Rochette L, Didier J-P, Moreau D, Bralet BS, Opie LH (1982): Role of beta adrenoceptor antagonism in the prevention of reperfusion ventricular arrhythmias: Effects of acebutolol, atenolol, and D-propranolol on isolated working rat hearts subject to myocardial ischemia. Am Heart J 107:1132–1141

    Article  Google Scholar 

  • Sah P, Hestrin S, Nicoll RA (1989): Tonic activation of NMDA receptors by ambient glutamate enhances excitability of neurons. Science 246:815–818

    Article  Google Scholar 

  • Sample RHB, DiMicco JA (1987): Localization of sites in the periventricular forebrain mediating cardiovascular effects of GABA agonists and antagonists in anesthetized cats. J Pharmacol Exp Ther 240:498–507

    Google Scholar 

  • Sanders BJ, Knardahl S, Johnson AK (1989): Lesions of the anteroventral third ventricle and development of stress-induced hypertension in the borderline hypertensive rat. Hypertension 13:817–821

    Google Scholar 

  • Sano K, Mayanagi Y, Sekino H, Ogashiwa M, Ishijima B (1970): Results of stimulation and destruction of the posterior hypothalamus in man. J Neurosurg 33:689–707

    Article  Google Scholar 

  • Saper CB, Loewy AD, Swanson LW, Cowan WM (1976): Direct hypothalamo-autonomic connections. Brain Res 117:305–312

    Article  Google Scholar 

  • Schmidt B, DiMicco JA (1984): Blockade of GABA receptors in periventricular forebrain of anesthetized cats: Effects on heart rate, arterial pressure, and hindlimb vascular resistance. Brain Res 301:111–119

    Article  Google Scholar 

  • Schmitt P, Carrive P, DiScala G, Jenck F, Brandao M, Bagri A, Moreau J-L, Sandner G (1986): A neuropharmacological study of the periventricular neural substrate involved in flight. Behav Brain Res 22:181–190

    Article  Google Scholar 

  • Schmitt P, DiScala G, Brandao ML, Karli P (1985): Behavioral effects of microinjections of SR 95103, a new GABAA antagonist, into the medial hypothalamus or the mesencephalic central gray. Eur J Pharmacol 117:149–158

    Article  Google Scholar 

  • Schramm LP, Honig CR, Bignall KE (1971): Active muscle vasodilation in primates homologous with sympathetic vasodilation in carnivores. Am J Physiol 221:768–777

    Google Scholar 

  • Schvarcz JR (1977): Results of stimulation and destruction of the posterior hypothalamus: a long-term evaluation. In: Neurosurgical Treatment in Psychiatry, Pain and Epilepsy, Sweet WH, Obrador S, Martin-Rodriguez JG, eds. Baltimore: University Park Press

    Google Scholar 

  • Shekhar A, DiMicco JA (1987): Defense reaction elicited by injection of GABA antagonists into the posterior hypothalamus in rats. Neuropharmacology 26:407–417

    Article  Google Scholar 

  • Shekhar A, Hingtgen JN, DiMicco JA (1987): Selective enhancement of shock avoidance responding elicited by GABA blockade in the posterior hypothalamus in rats. Brain Res 420:118–128

    Article  Google Scholar 

  • Shekhar A, Hingtgen JN, DiMicco JA (1989): Anxiogenic effects of noreleagnine, a water soluble beta carboline, in rats. Neuropharmacology 28:539–544

    Article  Google Scholar 

  • Shekhar A, Hingtgen JN, DiMicco JA (1990): GABA receptors in the posterior hypothalamus regulate experimental anxiety in rats. Brain Res 412:81–88

    Article  Google Scholar 

  • Shephard RA (1986): Neurotransmitters, anxiety, and benzodiazepines: a behavioral review. Neurosci Behav Rev 10:449–461

    Article  Google Scholar 

  • Skinner JE, Lie JT, Entman ML (1975): Modification of ventricular fibrillation latency following coronary occlusion in the conscious pig: the effects of psychologic stress and beta adrenergic blockade. Circulation 51:656–667

    Google Scholar 

  • Skinner JE, Reed JC (1981): Blockade of frontocortical-brainstem pathway prevents ventricular fibrillation of ischemic heart. Am J Physiol 240:H156–H163

    Google Scholar 

  • Smith HJ (1983): The need to redefine membrane stabilizing activity of beta adrenergic receptor antagonists. J Mol Cell Cardiol 14:495–500

    Article  Google Scholar 

  • Smith OA, Astley CA, Hohimer AR, Stephenson RB (1980): Behavioral and cerebral control of cardiovascular function. In: Neural Control of the Circulation, Hughes MJ, Barnes CD, eds. New York: Academic Press

    Google Scholar 

  • Smith OA, Hohimer AR, Astley CA, Taylor DJ (1979): Renal and hindlimb vascular control during acute emotion in the baboon. Am J Physiol 236:R198–R205

    Google Scholar 

  • Soltis RP, DiMicco JA (1991a): GABAA and excitatory amino acid receptors in dorsome dial hypothalamus and heart rate in rats. Am J Physiol 260:R13–R20

    Google Scholar 

  • Soltis RP, DiMicco JA (1991b): Interaction of hypothalamic GABAA and excitatory amino acid receptors controlling heart rate in rats. Am J Physiol 261:R427–R433

    Google Scholar 

  • Soltis RP, DiMicco JA (1992): Hypothalamic excitatory amino acid receptors mediate stress-induced tachycardia in rats. Am J Physiol. 262:R689–R697

    Google Scholar 

  • Spencer SE, Sawyer WB, Loewy AD (1990): L-Glutamate mapping of cardioreactive areas in the posterior hypothalamus. Brain Res 511:149–157

    Article  Google Scholar 

  • Stephens DN, Schneider HH, Kehr W, Jensen LH, Petersen E, Honore T (1987): Modulation of anxiety by beta-carbolines and other benzodiazepine receptor ligands: Relationship of pharmacological to biochemical measures of efficacy. Brain Res Bull 19:309–318

    Article  Google Scholar 

  • Stratton JR, Halter JB (1985): Effects of a benzodiazepine (Alprazolam) on plasma epinephrine and norepinephrine levels during exercise stress. Am J Cardiol 56:136–139

    Article  Google Scholar 

  • Stutzman J-M, Bohme GA, Cochon M, Roux M, Blanchard J-C (1987): Pro-conflict and electrocorticographic effects of drugs modulating GABAergic neurotransmission. Psychopharmacology 91:74–79

    Article  Google Scholar 

  • Swanson LW, Sawchenko PE (1980): Paraventricular nucleus: A site for integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology 31:410–417

    Article  Google Scholar 

  • Swanson LW, Sawchenko PE (1983): Hypothalamic integration: Organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6:269–324

    Article  Google Scholar 

  • Swanson LW, Sawchenko PE, Lind RW (1986): Regulation of multiple peptides in CRF parvocellular neurons: Implications for the stress response. Prog Brain Res 68:169–188

    Article  Google Scholar 

  • Tan E, Dampney RAL (1983): Cardiovascular effects of stimulation of neurones within the defense area of the hypothalamus and midbrain of the rabbit. Clin Exp Physiol Pharmacol 10:299–303

    Article  Google Scholar 

  • Tappaz ML, Brownstein MJ, Kopin IJ (1977): Glutamate decarboxylase and GABA in discrete nuclei of hypothalamus and substantia nigra. Brain Res 125:109–121

    Article  Google Scholar 

  • Ter Horst GJ, Luiten PGM (1986): Projections of the dorsomedial hypothalamic nucleus in the rat. Brain Res Bull 16:231–248

    Article  Google Scholar 

  • Ter Horst GJ, Luiten PGM (1987): Phaseolus vulgaris leuco-agglutinin tracing of the intrahypothalamic connections of the lateral, ventromedial, dorsomedial and paraventricular hypothalamic nuclei in the rat. Brain Res Bull 18:191–203

    Article  Google Scholar 

  • Thiebot M-H, Soubrie P, Sanger D (1988): Anxiogenic properties of beta-CCE and FG 7142: A review of promises and pitfalls. Psychopharmacology 94:452–463

    Article  Google Scholar 

  • van den Pol AN, Wuarin J-P, Dudek FE (1990): Glutamate, the dominant excitatory transmitter in endocrine regulation. Science 250:1276–1278

    Article  Google Scholar 

  • Van der Heyden JAM, de Kloet EK, Korf J, Versteeg DHG (1979): GABA content of discrete brain nuclei and spinal cord of the rat. J Neurochem 33:857–861

    Article  Google Scholar 

  • Waldrop TG, Bauer Rm (1989): Modulation of sympathetic discharge by a hypothalamic GABAergic mechanism. Neuropharmacology 28:263–269

    Article  Google Scholar 

  • Waldrop TG, Bauer RM, Iwamoto GA (1989): Microinjection of GABA antagonists into the posterior hypothalamus elicits locomotor activity and a cardiorespiratory activation. Brain Res 444:84–94

    Article  Google Scholar 

  • Wible JH Jr, DiMicco JA, Luft FC (1989): Hypothalamic GABA and sympathetic regulation in spontaneously hypertensive rats. Hypertension 14:623–628

    Google Scholar 

  • Wible JH Jr, Luft FC, DiMicco JA (1988): Hypothalamic GABA suppresses sympathetic outflow to the cardiovascular system. Am J Physiol 254:R680–687

    Google Scholar 

  • Williams CL, Peterson JM, Villar R, Burks TF (1987): Corticotrophin-releasing factor directly mediates colonic responses to stress. Am J Physiol 253:G582–586

    Google Scholar 

  • Yardley CP, Hilton SM (1986): The hypothalamic and brainstem areas from which the cardiovascular and behavioral components of the defense reaction are elicited in the rat. J Auton Nerv Syst 15:227–244

    Article  Google Scholar 

  • Yardley CP, Hilton SM (1987): Vasodilatadon in hind-limb skeletal muscle evoked as part of the defense reaction in the rat. J Auton Nerv Syst 19:127–136

    Article  Google Scholar 

  • Yashpal K, Gauthier S, Henry JL (1987): Oxytocin administered intrathecally preferentially increases heart rate rather than arterial pressure in the rat. J Autonom Nerv Syst 20:167–178

    Article  Google Scholar 

  • Yasui Y, Breder CD, Saper CB, Cechetto DF (1991): Autonomic responses and efferent pathways from the insular cortex in the rat. J Comp Neurol 303:355–374

    Article  Google Scholar 

  • Zhang J-X, Harper RM, Ni H (1986): Cryogenic blockade of the central nucleus of the amygdala attenuates aversively conditioned blood pressure and respiratory responses. Brain Res 386:136–141

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Boston

About this chapter

Cite this chapter

DiMicco, J.A., Soltis, R.P., Anderson, J.J., Wible, J.H. (1992). Hypothalamic Mechanisms and the Cardiovascular Response to Stress. In: Kunos, G., Ciriello, J. (eds) Central Neural Mechanisms in Cardiovascular Regulation. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-9184-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9184-5_3

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-9186-9

  • Online ISBN: 978-1-4684-9184-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics