Skip to main content

Role of Pyruvate Dehydrogenase in Lactate Production in Exercising Human Skeletal Muscle

  • Chapter
Hypoxia

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 474))

Abstract

The mechanisms responsible for lactate production with increased intensity of muscle contraction are controversial. Some investigators suggest that the mitochondria are O2-limited, whereas others suggest that lactate production occurs when O2 to the mitochondria is adequate and that the increased lactate production is due to a “mass-action effect” when pyruvate production exceeds the rate of pyruvate oxidation. Pyruvate dehydrogenase is a rate-limiting enzyme for pyruvate entry into the tricarboxylic acid cycle; its catalytic activity influences both pyruvate oxidation and lactate production. Since lactate dehydrogenase is an equilibrium enzyme, increased lactate production will be due to a mass-action effect exerted by increases in pyruvate concentrations. Because the equilibrium constant of the lactate dehydrogenase reaction markedly favors lactate over pyruvate, small increases in pyruvate concentration will result in large increases in lactate concentration. At higher exercise intensities, which are more reliant on glycogen as substrate, the rate of pyruvate production exceeds the catalytic activity of pyruvate dehydrogenase, and lactate production occurs. Studies using dichloroacetate, induced acid-base changes, diet and short-term endurance training, indicate that lactate production is related to complex interactions of metabolic pathways and not related to inadequate O2 supply. As pyruvate dehydrogenase plays a central role in the integration of carbohydrate and fat metabolism, and in the entry of pyruvate into the tricarboxylic acid cycle, this enzyme plays a key role in lactate production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balaban, R. S. Regulation of oxidative phosphorylation in the mammalian cell. Am. J. Physiol. 258: C377–C389, 1990.

    PubMed  CAS  Google Scholar 

  2. Cadefau, J., H. J. Green, R. Cussó, M. Ball-Burnett, and G. Jamieson. Coupling of muscle phosphorylation potential to glycolysis during submaximal exercise of varying intensity after short-term training. J. Appl. Physiol. 76: 2586–2593, 1994.

    PubMed  CAS  Google Scholar 

  3. Chance, B. and B. Quistorff. Study of tissue oxygen gradients by single and multiple indicators. Adv. Exp. Med. Biol. 94: 331–338, 1978.

    Article  Google Scholar 

  4. Connett, R. J., T. E. J. Gayeski, and C. R. Honig. Lactate efflux is unrelated to intracellular PO2 in a working red muscle in situ. J. Appl. Physiol. 61: 402–408, 1986.

    PubMed  CAS  Google Scholar 

  5. Cooper, D. M., D. H. Wasserman, M. Vranic, and K. Wasserman. Glucose turnover in response to exercise during high-and low-FIO2 breathing in man. Am. J. Physiol. 251: E209–E214, 1986.

    PubMed  CAS  Google Scholar 

  6. Denton, R. M., P. J. Randle, B. J. Bridges, R. H. Cooper, A. L. Kerbey, H. T. Pask, D. L. Severson, D. Stansbie, and S. Whitehouse. Regulation of mammalian pyruvate dehydrogenase. Mol. Cell. Biochem. 9: 27–53, 1975.

    Article  PubMed  CAS  Google Scholar 

  7. Dill, D. B. The economy of muscular exercise. Physiol. Rev. 16: 263–291, 1936.

    Google Scholar 

  8. Evans, O. B. Human muscle pyruvate dehydrogenase activity. Neurology 33: 51–56, 1983.

    Article  PubMed  CAS  Google Scholar 

  9. Gibala, M. J., D. A. MacLean, T. E. Graham, and B. Saltin. Tricarboxylic acid cycle intermediate pool size and estimated cycle flux in human muscle during exercise. Am J Physiol 275: E235–E242, 1998.

    PubMed  CAS  Google Scholar 

  10. Graham, T. E. Mitochondrial redox state in skeletal muscle cannot be estimated with glutamate dehydrogenase system. Am. J. Physiol. 254: C588–0590, 1988.

    CAS  Google Scholar 

  11. Green, H., R. Helyar, M. Ball-Burnett, N. Kowalchuk, S. Symon, and B. Farrance. Metabolic adaptations to training precede changes in muscle mitochondrial capacity. J. Appl. Physiol. 72: 484–491, 1992.

    PubMed  CAS  Google Scholar 

  12. Green, H. J., S. Jones, M. E. Ball-Burnett, D. Smith, J. Livesey, and B. W. Farrance. Early muscular and metabolic adaptations to prolonged exercise training in man. J. Appl. Physiol. 70: 2032–2038, 1991.

    PubMed  CAS  Google Scholar 

  13. Heigenhauser, G. J. F. and N. L. Jones. Bicarbonate loading. In: Ergogenics - Enhancement of Performance in Exercise and Sport,edited by D. R. Lamb and M. H. Williams. Carmel,IN: W.C.B. Brown and Benchmark, 1991, p. 183–212.

    Google Scholar 

  14. Heinrich, R., S. Schuster, and H. G. Holzhutter. Mathematical analysis of enzymic reaction systems using optimization principles. Eur. J. Biochem. 201: 1–21, 1991.

    Article  PubMed  CAS  Google Scholar 

  15. Howlett, R. A., G. J. F. Heigenhauser, E. Hultman, M. G. Hollidge-Horvat, and L. L. Spriet. Effects of dichloroacetate infusion on human skeletal muscle metabolism at the onset of exercise. Am J Physiol 1998.

    Google Scholar 

  16. Howlett, R. A., L. M. Parolin, D. J. Dyck, E. Hultman, N. L. Jones, G. J. F. Heigenhauser, and L. L. Spriet. Regulation of skeletal muscle glycogen phosphorylase and pyruvate dehydrogenase at different exercise power outputs. Am. J. Physiol. 275: R418–R425, 1998.

    PubMed  CAS  Google Scholar 

  17. Johnson, L. N. Glycogen phosphorylase: control by phosphorylation and allosteric effects. FASEB J. 6: 2274–2282, 1992.

    PubMed  CAS  Google Scholar 

  18. Jöbsis, F. F. and W. N. Stainsby. Oxidation of NADH during contractions of circulated mammalian skeletal muscle. Respir. Physiol. 4: 292–300, 1968.

    Article  PubMed  Google Scholar 

  19. Jones, N. L. and G. J. F. Heigenhauser. Effects of hydrogen ions on metabolism during exercise. In: Energy Metabolism in Exercise and Sport,edited by D. R. Lamb and C. V. Gisolfi. Dubuque,IA: W.C.Brown and Benchmark, 1992, p. 107–148.

    Google Scholar 

  20. Jones, N. L., J. R. Sutton, R. Taylor, and C. J. Toews. Effect of pH on cardiorespiratory and metabolic responses to exercise. J. Appl. Physiol. 43: 959–964, 1977.

    PubMed  CAS  Google Scholar 

  21. Newsholme, E. A. and B. Crabtree. Theoretical principles in the approaches to control of metabolic pathways and their application to glycolysis in muscle. J Mol. Cell. Cardiol. 11: 839–856, 1979.

    Article  PubMed  CAS  Google Scholar 

  22. Parolin, M. L., A. Chesley, M. P. Matsos, L. L. Spriet, N. L. Jones, and G. J. F. Heigenhauser. Regulation of human skeletal muscle phosphorylase and pyruvate dehydrogenase during maximal intermittent exercise. Am JPhysiol submitted for pub. 1998.

    Google Scholar 

  23. Phillips, S. M., H. J. Green, M. A. Tarnopolsky, and S. M. Grant. Increased clearance of lactate after short-term training in men. J. Appl. Physiol. 79: 1862–1869, 1995.

    PubMed  CAS  Google Scholar 

  24. Putman, C. T., N. L. Jones, E. Hultman, M. G. Hollidge-Horvat, A. Bonen, D. R. McConachie, and G. J. F. Heigenhauser. Effects of short-term submaximal training in humans on muscle metabolism in exercise. Am. J. Physiol. 275: E132–E135, 1998.

    PubMed  CAS  Google Scholar 

  25. Putman, C. T., N. L. Jones, L. C. Lands, T. M. Bragg, M. G. Hollidge-Horvat, and G. J. F. Heigenhauser. Skeletal muscle pyruvate dehydrogenase activity during maximal exercise in humans. Am. J. Physiol. 269: E458–E468, 1995.

    PubMed  CAS  Google Scholar 

  26. Putman, C. T., L. L. Spriet, E. Hultman, M. I. Lindinger, L. C. Lands, R. S. McKelvie, G. Cederblad, N. L. Jones, and G. J. F. Heigenhauser. Pyruvate dehydrogenase activity and acetyl group accumulation during exercise after different diets. Am. J. Physiol. 265: E752–E760, 1993.

    PubMed  CAS  Google Scholar 

  27. Sahlin, K. NADH and NADPH in human skeletal muscle at rest and during ischaemia. Clin. Physiol. 3: 477–485, 1983.

    Article  PubMed  CAS  Google Scholar 

  28. Sahlin, K. NADH in human skeletal muscle during short-term intense exercise. Pflugers Arch. 403: 193–196, 1985.

    Article  PubMed  CAS  Google Scholar 

  29. Sahlin, K., A. Katz, and S. Broberg. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am. J. Physiol. 259: C834–C841, 1990.

    PubMed  CAS  Google Scholar 

  30. Spriet, L. L., M. I. Lindinger, G. J. F. Heigenhauser, and N. L. Jones. Effects of alkalosis on skeletal muscle metabolism and performance during exercise. Am. J. Physiol. 251: R833–R839, 1986.

    PubMed  CAS  Google Scholar 

  31. Spriet, L. L., M. I. Lindinger, R. S. McKelvie, G. J. F. Heigenhauser, and N. L. Jones. Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J. Appl. Physiol. 66: 8–13, 1989.

    PubMed  CAS  Google Scholar 

  32. Stansbie, D. Regulation of the human pyruvate dehydrogenase complex. Clin. Sci. Mol. Med. 51: 445–452, 1976.

    PubMed  CAS  Google Scholar 

  33. Timmons, J. A., T. Gustafsson, C. J. Sundberg, E. Jansson, and P. L. Greenhaff. Muscle acetyl group availability is a major determinant of oxygen deficit in humans during submaximal exercise. Am. J. Physiol. 274: E377–E380, 1998.

    PubMed  CAS  Google Scholar 

  34. Timmons, J. A., T. Gustafsson, C. J. Sundberg, E. Jansson, E. Hultman, L. Kaijser, J. Chwalbinska-Moneta, D. Constantin-Teodosiu, I. A. Macdonald, and P. L. Greenhaff. Substrate availability limits human skeletal muscle oxidative ATP regeneration at the onset of ischemic exercise. J. Clin. Invest. 101: 79–85, 1998.

    Article  PubMed  CAS  Google Scholar 

  35. Timmons, J. A., S. M. Poucher, D. Constantin-Teodosiu, I. A. Macdonald, and P. L. Greenhaff. Metabolic responses from rest to steady state determine contractile function in ischemic skeletal muscle. Am. J. Physiol. 273: E233–E238, 1997.

    PubMed  CAS  Google Scholar 

  36. Timmons, J. A., S. M. Poucher, D. Constantin-Teodosiu, V. Worrall, I. A. Macdonald, and P. L. Greenhaff. Increased acetyl group availability enhances contractile function of canine skeletal muscle during ischemia. J. Clin. Invest. 97: 879–883, 1996.

    Article  PubMed  CAS  Google Scholar 

  37. Timmons, J. A., S. M. Poucher, D. Constantin-Teodosiu, V. Worrall, I. A. Macdonald, and P. L. Greenhaff. Metabolic responses of canine gracilis muscle during contraction with partial ischemia. Am. J. Physiol. 270: E400–E406, 1997.

    Google Scholar 

  38. Wilson, D. F. Factors affecting the rate and energetics of mitochondrial oxidative phosphorylation. Med. Sci. Sports Exerc. 26: 37–43, 1994.

    PubMed  CAS  Google Scholar 

  39. Wilson, D. F. Energy metabolism in muscle approaching maximal rates of oxygen utilization. Med. Sci. Sports Exerc. 27: 54–59, 1995.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Heigenhauser, G.J.F., Parolin, M.L. (1999). Role of Pyruvate Dehydrogenase in Lactate Production in Exercising Human Skeletal Muscle. In: Roach, R.C., Wagner, P.D., Hackett, P.H. (eds) Hypoxia. Advances in Experimental Medicine and Biology, vol 474. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4711-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4711-2_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7134-2

  • Online ISBN: 978-1-4615-4711-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics