Skip to main content

Origin and Early Evolution of Predators

The Ecotone Model and Early Evidence for Macropredation

  • Chapter
Predator—Prey Interactions in the Fossil Record

Part of the book series: Topics in Geobiology ((TGBI,volume 20))

Abstract

Our current knowledge on the origin and early evolution of large predators is summarized by Simon Conway Morris (1999, 153–154) as follows:

...for many years it was claimed that Cambrian marine communities were almost entirely free of predators… the seas were [thought to be] full of suspension-feeders gently swaying in the sea water and deposit feeders calmly digging their way through the sediment. This view is now seen to be far too idyllic, but the story of the rise of predators is still quite tentative. It does appear, however, that in contrast to Cambrian communities those of the Ediacaran were largely free of predators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alexander, R. R., 1987, Intraspecific selective survival within variably uniplicate Late Devonian brachiopods, Lethaia 20:315–325.

    Article  Google Scholar 

  • Alpert, S., 1976, Trilobite and star-like trace fossils from the White-Inyo Mountains, California, J. Paleontol. 49:661–669.

    Google Scholar 

  • Alpert, S., and Moore, J. N., 1975, Lower Cambrian trace fossil evidence for predation on trilobites, Lethaia 8:223–230.

    Article  Google Scholar 

  • Alroy, J., 2001, A multispecies overkill simulation of the end Pleistocene megafaunal mass extinction, Science 292:1893–1896.

    Article  Google Scholar 

  • Anderson, A., 1989, Mechanics of overkill in the extinction of New Zealand moas, J. Archaeol. Sci. 16:137–151.

    Article  Google Scholar 

  • Bambach, R. K., and Kowalewski, M., 1999, Diversity of predators compared to the records of prey-predator escalation—two tales of the history of predation, Geol. Soc. Am. Abstr. Progr. 31:336.

    Google Scholar 

  • Bengtson, S., 1994, The advent of animal skeletons, in: Early Life on Earth (S. Bengtson, ed.), Columbia University Press, New York, pp. 412–425.

    Google Scholar 

  • Bengtson, S., and Yue Zhao, 1992, Predatorial borings in Late Precambrian mineralized exoskeletons, Science 257:367–369.

    Article  Google Scholar 

  • Bergson, H., 1908, L’Evolution créatrice, Librairies Félix Alcan et Guillaumin Réunies, Paris.

    Google Scholar 

  • Birkenmajer, K., 1977, Trace fossil evidence for predation on trilobites from Lower Cambrian of South Spitsbergen, Norsk Polarinstitut Arsbok 1976:187–195.

    Google Scholar 

  • Blake, D. B., and Guensburg, T. E., 1992, Caught in the act; a Late Ordovician asteroid and its pelecypod prey, Geol. Soc. Am. Abstr. Progr. 24:6.

    Google Scholar 

  • Bond, A. B., and Kamil, A. C., 2002, Visual predators select for crypticity and polymorphism in virtual prey, Nature 415:609–613.

    Article  Google Scholar 

  • Bownng, S. A., Grotzinger, J. P., Isachsen, C. E., Knoll, A. H., Pelechaty, S. M., and Kolosov, P., 1993, Calibrating rates of Early Cambrian evolution, Science 261:1293–1298.

    Article  Google Scholar 

  • Brasier, M., Green, O., and Shields, G., 1997, Ediacaran sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna, Geology 25:303–306.

    Article  Google Scholar 

  • Briggs, D. E. G., 1994, Giant predators from the Cambrian, Science 264:1283–1284.

    Article  Google Scholar 

  • Briggs, D. E. G, and Whittington, H. B, 1985, Terror of the trilobites. Nat. Hist. 94:34–39.

    Google Scholar 

  • Burzin, M., 1999, A mysterious world of Ediacaran organisms, Science in Russia 2:22–28.

    Google Scholar 

  • Burzin, M. B., and Gnilovskaya, M. B., 1999, Kakimi byli drevneishie zhibotnye, Priroda 11:31–41.

    Google Scholar 

  • Chen J., Ramsköld, L., and Gui-Qing, Z., 1994, Evidence for monophyly and arthropod affinity of Cambrian giant predators, Science 264:1304–1308.

    Article  Google Scholar 

  • Collins, D., 1996, The “evolution” of Anomalocaris and its classification in the arthropod class Dinocarida (nov.) and order Radiodonta (nov.), J. Paleontol. 70:280–293.

    Google Scholar 

  • Conway Morris, S., 1985, Cambrian enigma, Nature 316:677.

    Article  Google Scholar 

  • Conway Morris, S., 1999, The Crucible of Creation, Oxford University Press, Oxford.

    Google Scholar 

  • Conway Morris, S., and Bengtson, S., 1994, Cambrian predators; possible evidence from boreholes, J. Paleontol. 68:1–23.

    Google Scholar 

  • Conway Morris, S., and Jenkins, R. J. F., 1985, Healed injuries in Early Cambrian trilobites from South Australia, Alcheringa 9:167–177.

    Article  Google Scholar 

  • Culver, S. J., 1991, Early Cambrian foraminifera from West Africa, Science 254:689–691.

    Article  Google Scholar 

  • Debrenne, F., and Zhuravlev, A. Yu., 1997, Cambrian food web: A brief review, Geobios 20:181–188.

    Article  Google Scholar 

  • Droser, M. L., Jensen, S., and Gehling, J. G., 1998, The first grave robbers: Early Cambrian ichnofabric, Geol. Soc. Am. Abstr. Progr. 30:233.

    Google Scholar 

  • Eisner, T., Eisner, M., and Deyrup, M., 1996, Millipede defense: use of detachable bristles to entangle ants, Proc. Nat. Acad. Sci. USA 93:10848–10851.

    Article  Google Scholar 

  • Evans, J. W., 1910, The sudden appearance of the Cambrian fauna, 11th Inter. Geol. Congr., Stockholm, 1910, Compte Rendu 1:543–546.

    Google Scholar 

  • Fortin, M.-J., 1994, Edge detection algorithms for two-dimensional ecological data, Ecology 75:956–965.

    Article  Google Scholar 

  • Gaudry, A., 1883, Les Enchainements du Monde Animal Dans Les Temps Geologiques, Fossiles primaires, Libraire F. Savy, Paris.

    Google Scholar 

  • Hallam, A., 1992, Great Geological Controversies, Oxford University Press, Oxford.

    Google Scholar 

  • Hawksworth, D. L., 1994, Strategies for living together, Nature 371:570.

    Article  Google Scholar 

  • Horny, R. J., 1997, Shell breakage and repair in Sinuitopsis neglecta (Mollusca, Tergomya) from the Middle Ordovician of Bohemia, Casopis Narodniho Muzea v Praze. Rada Prirodovedna 166:137–142.

    Google Scholar 

  • Jensen, S., 1990, Predation by early Cambrian trilobites on infaunal worms—evidence from the Swedish Mickwitzia Sandstone, Lethaia 23:29–42.

    Article  Google Scholar 

  • Jensen, S., Gehling, J. G., and Droser, M. L., 1998, Ediacara-type fossils in Cambrian sediments, Nature 393:567–569.

    Article  Google Scholar 

  • Kelly-Borges, M., 1995, Sponges out of their depth, Nature 373:284.

    Article  Google Scholar 

  • Khakhina, L. N., 1992, Concepts of Symbiogenesis, Yale University Press, New Haven.

    Google Scholar 

  • Landing, E., Bowring, S. A., Davidek, K. L., Westrop, S. R., Geyer, G., and Heldmaier, W., 1998, Duration of the Early Cambrian: U-Pb ages of volcanic ashes from Avalon and Gondwana, Can. J. Earth Sci. 35:329–338.

    Article  Google Scholar 

  • Leighton, L. R., 1999, Antipredatory function of brachiopod ornament, Geol. Soc. Am. Abstr. Progr. 31:43.

    Google Scholar 

  • Leighton, L. R., 2001, New example of Devonian predatory boreholes and the influence of brachiopod spines on predator success, Palaeogeogr. Palaeoclim. Palaeoecol. 165:53–69.

    Article  Google Scholar 

  • Lescinsky, H. L., and Benninger, L., 1994, Pseudo-borings and predator traces; artifacts of pressure-dissolution in fossiliferous shales, Palaios 9:599–604.

    Article  Google Scholar 

  • Margulis, L., and Sagan, D., 2000, What is Life?, University of California Press, Berkeley.

    Google Scholar 

  • Martin, P. S., 1967, Pleistocene overkill, Nat. Hist. 76:32–38.

    Google Scholar 

  • May, R. M., 1976, Simple mathematical models with very complicated dynamics, Nature 261:459–467.

    Article  Google Scholar 

  • McCarty, G., 1976, Calculator calculus, Page-Finklin Publishing Company, Palo Alto, California.

    Google Scholar 

  • McIlroy, D., and Szaniawski, H., 2000, A Lower Cambrian protoconodont apparatus from the Placentian of southeastern Newfoundland, Lethaia 33:95–102.

    Article  Google Scholar 

  • McMenamin, M. A. S., 1986, The Garden of Ediacara, Palaios 1:178–182.

    Article  Google Scholar 

  • McMenamin, M. A. S., 1987, The fate of the Ediacaran fauna, the nature of conulariids, and the basal Paleozoic predator revolution, Geol. Soc. Am. Abstr. Progr. 19:29.

    Google Scholar 

  • McMenamin, M. A. S., 1988, Paleoecological feedback and the Vendian-Cambrian transition, Trends Ecol. Evol. 3:205–208.

    Article  Google Scholar 

  • McMenamin, M. A. S., 1992a., The Cambrian transition as a time-transgressive ecotone, Geol. Soc. Am. Abstr. Progr. 24:62.

    Google Scholar 

  • McMenamin, M. A. S., 1992b, Two new species of the Cambrian genus Mickwitzia, J. Paleontol. 66:173–182.

    Google Scholar 

  • McMenamin, M. A. S., 1993, Osmotrophy in fossil protoctists and early animals, Invert. Reprod. Develop. 22:301–304.

    Google Scholar 

  • McMenamin, M. A. S., 1996, Ediacaran biota from Sonora, Mexico, Proc. Nat. Acad. Sci. USA 93:4990–4993.

    Article  Google Scholar 

  • McMenamin, M. A. S., 1998, The Garden of Ediacara, Columbia University Press, New York.

    Google Scholar 

  • McMenamin, M. A. S., ed., 2001, Paleontology Sonora: Lipalian and Cambrian, Meanma Press, South Hadley, Massachusetts.

    Google Scholar 

  • McMenamin, M. A. S., and McMenamin, D. L. S., 1990, The Emergence of Animals, Columbia University Press, New York.

    Google Scholar 

  • McMenamin, M. A. S., and Whiteside, J. H., 1999, Hypermarine upwelling and a new Vernadskian metric, J. Biosph. Sci. 1,http://www.mtholyoke.edu

  • Moody, K. E., 2001, Patterns of Predation on juvenile blue crabs in lower Chesapeake Bay: size, habitat and seasonality, in: Proceedings of the Blue Crab Mortality Symposium (V. Guillory, H. Perry, and S. Vanderkooy, eds.), Gulf States Mar. Fish. Commis. Pub. No. 90, Ocean Springs, Mississippi, pp. 84–92.

    Google Scholar 

  • Moody, K. E., and Steneck, R. S., 1993, Mechanisms of predation among large decapod crustaceans of the Gulf of Maine Coast: functional vs. phylogenetic patterns, J. Exper. Mar. Biol. Ecol. 168:111–124.

    Article  Google Scholar 

  • Nedin, C., 1999, Anomalocaris predation on nonmineralized and mineralized trilobites, Geology 27:987–990.

    Article  Google Scholar 

  • Nesis, K. N., 1995, Khishchniki na zare zhizni, Priroda 8:60–62

    Google Scholar 

  • O’Shea, D., 1980, An Exposition of Catastrophe Theory and its Applications to Phase Transitions, Queen’s Papers in Pure and Applied Mathematics Number 47, Queen’s University, Kingston, Ontario.

    Google Scholar 

  • O’Shea, D., 1986, Elementary catastrophes, phase transitions and singularities, Math. Model. 7:397–411.

    Article  Google Scholar 

  • Pickerill, R. K., and Blissett, D., 1999, A predatory Rusophycus burrow from the Cambrian of southern New Brunswick, eastern Canada, Atlantic Geol. 35:179–183.

    Google Scholar 

  • Schlichter, D., and Fricke, H. W., 1991, Mechanisms of amplification of photosynthetically active radiation in the symbiotic deep-water coral Leptoseris fragilis, Hydrobiologia 216/217:389–394.

    Article  Google Scholar 

  • Sebens, K. P., and Koehl, M. A. R., 1984, Predation on zooplankton by the benthic anthozoans Alcyonium siderium (Alcyonacea) and Metridium senile (Actiniaria) in the New England subtidal, Mar. Biol. 81:255–271.

    Article  Google Scholar 

  • Sepkoski, J. J., 1992, Proterozoic-Early Cambrian diversification of metazoans and metaphytes, in: The Proterozoic Biosphere (J. W. Schopf and C. Klein, eds.), Cambridge University Press, Cambridge, pp. 553–561.

    Google Scholar 

  • Stanley, S. M., 1973, An ecological theory for the sudden origin of multicellular life in the late Precambrian, Proc. Nat. Acad. Sci. USA 70:1486–1489.

    Article  Google Scholar 

  • Vacelet, J., and Boury-Esnault, N., 1995, Carnivorous sponges, Nature 373:333–335.

    Article  Google Scholar 

  • Valentine, J. W., 1994, The Cambrian explosion, in: Early Life on Earth (S. Bengtson, ed.), Columbia University Press, New York, pp. 401–411.

    Google Scholar 

  • Verhulst, P. F., 1838, Notice sur la loi que la population suit dans son accroissement, Coresp. Math. Phys. 10:113–121.

    Google Scholar 

  • Vermeij, G. J., 1987, Evolution and Escalation: An Ecological History of Life, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Vernadsky, V. I., 1998, The Biosphere, Springer-Verlag, New York.

    Book  Google Scholar 

  • Vorwald, G. R., 1982, Healed injuries in trilobites; evidence for a large Cambrian predator, Geol. Soc. Am. Abstr. Progr. 14:639.

    Google Scholar 

  • Waggoner, B. M., 2000, Rewriting the rulebook; community ecology through the Neoproterozoic-Cambrian transition, Geol. Soc. Am. Abstr. Progr. 32:41.

    Google Scholar 

  • Walker, T. D., 1985, Diversification functions and the rate of taxonomic evolution, in: Phanerozoic Diversity Patterns (J. W. Valentine, ed.), Princeton University Press, Princeton, New Jersey, pp. 311–334.

    Google Scholar 

  • Whittington, H. B., 1985, The Burgess Shale, Yale University Press, New Haven.

    Google Scholar 

  • Whittington, H. B., and Briggs, D. E. G., 1985, The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia, Trans. R. Soc. London, Series B, Biol. Sci. 309:569–609.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mcmenamin, M.A.S. (2003). Origin and Early Evolution of Predators. In: Kelley, P.H., Kowalewski, M., Hansen, T.A. (eds) Predator—Prey Interactions in the Fossil Record. Topics in Geobiology, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0161-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0161-9_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4947-1

  • Online ISBN: 978-1-4615-0161-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics