Skip to main content

The Evolution and Development of Middle Ears in Land Vertebrates

  • Chapter
  • First Online:
The Middle Ear

Part of the book series: Springer Handbook of Auditory Research ((SHAR))

Abstract

New fossil evidence and supporting data from embryological studies have helped to consolidate interpretations of the structures that assemble the middle ear apparatus of different lineages of land vertebrates. The middle ears of modern land vertebrate groups evolved independently of one another during the Triassic era of the Mesozoic. Thus, two dogmata have fallen: (1) The tympanic middle ear is not a monophyletic development, i.e., the eardrum-bearing middle ears of modern land vertebrates are not descended from one common ancestral type. (2) The mammalian middle ear did not emerge by the addition of two more ossicles to an existing, one-ossicle middle ear because mammalian ancestors, like all other vertebrate lineages of late Permian–early Triassic times, lacked a tympanic middle ear. Whereas most lineages evolved a single-ossicle system, mammals developed a three-ossicle system. This difference is due to mammals simultaneously evolving a secondary jaw joint, a process that freed up small bones at the rear of the jaw that became incorporated into the middle ear. Functionally, there are only small differences between the resulting two types of middle ear. Because all middle ear systems were constructed from preexisting components of the skull that subserved other functions, there are striking similarities in the embryological origins and the developmental pathways of all land vertebrate middle ears and homologous, ancestral jaw components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitkin, L. M., & Johnstone, B. M. (1972). Middle-ear function in a monotreme: The echidna (Tachyglossus aculeatus). Journal of Experimental Zoology, 180, 245–250.

    Article  CAS  PubMed  Google Scholar 

  • Allin, E. F. (1986). The auditory apparatus of advanced mammal-like reptiles and early mammals. In H. Hotton, P. D. MacLean, J. J. Roth, & E. C. Roth (Eds.), The ecology and biology of mammal-like reptiles (pp. 283–294). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Allin, E. F., & Hopson, J. A. (1992). Evolution of the auditory system in Synapsida (“Mammal-like reptiles” and primitive mammals) as seen in the fossil record. In D. B. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 587–614). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Bennett, A. F., & Ruben, J. A. (1986). The metabolic and thermoregulatory status of therapods. In H. Hotton, P. D. MacLean, J. J. Roth, & E. C. Roth (Eds.), The ecology and biology of mammal-like reptiles (pp. 207–218). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R., Price, S. A., Vos, R. A., Gittleman, J. L., & Purvis, A. (2007). The delayed rise of present-day mammals. Nature, 446, 507–512.

    Article  CAS  PubMed  Google Scholar 

  • Brazeau, M. D., & Ahlberg, P. E. (2006). Tetrapod-like middle ear architecture in a Devonian fish. Nature, 439, 318–321.

    Article  CAS  PubMed  Google Scholar 

  • Carroll, R.L. (1988) Vertebrate paleontology and evolution. New York: Freeman.

    Google Scholar 

  • Chapman, S. C. (2011). Can you hear me now? Understanding vertebrate middle ear development. Frontiers of Bioscience, 16, 1675–1692.

    Article  CAS  Google Scholar 

  • Chin, K., Kurian, R., & Saunders, J. C. (1997). Maturation of tympanic membrane layers and collagen in the embryonic and post-hatch chick (Gallus domesticus). Journal of Morphology, 233, 257–266.

    Article  CAS  PubMed  Google Scholar 

  • Christensen-Dalsgaard, J. (2010). Vertebrate pressure-gradient receivers. Hearing Research, 273, 37–45.

    Article  PubMed  Google Scholar 

  • Christensen-Dalsgaard, J., & Manley, G. A. (2008). Acoustical coupling of lizard eardrums. Journal of the Association for Research in Otolaryngology, 9, 407–416.

    Article  PubMed Central  PubMed  Google Scholar 

  • Clack, J. A. (2002). Patterns and processes in the early evolution of the tetrapod ear. Journal of Neurobiology, 53, 251–264.

    Article  PubMed  Google Scholar 

  • Clack, J. A. (2009). The fin to limb transition: New data, interpretations, and hypotheses from paleontology and developmental biology. Annual Review of Earth and Planetary Sciences, 37, 163–179.

    Article  CAS  Google Scholar 

  • Clack, J. A., & Allin, E. (2004). The evolution of single- and multiple-ossicle ears in fishes and tetrapods. In G. A. Manley, A. N. Popper, & R. R. Fay (Eds.), Evolution of the vertebrate auditory system (pp. 128–163). New York: Springer.

    Chapter  Google Scholar 

  • Clack, J. A., Ahlberg, P. E., Finney, S. M., Dominguez Alonso, P., Robinson, J., & Ketcham, R. A. (2003). A uniquely specialised ear in a very early tetrapod. Nature, 425, 65–69.

    Article  CAS  PubMed  Google Scholar 

  • Coates, M. I., & Clack, J. A. (1990). Polydactyly in the earliest known tetrapod limbs. Nature, 347, 66–69.

    Article  Google Scholar 

  • Coleman, M. N., & Boyer, D. M. (2012). Inner ear evolution in primates through the Cenozoic: Implications for the evolution of hearing. The Anatomical Record, DOI 10.1002/ar.22422.

  • Depew, M. J., Lufkin, T., & Rubenstein, J. L. R. (2002). Specification of jaw subdivisions by Dlx genes. Science, 298, 381–385.

    Article  CAS  PubMed  Google Scholar 

  • Evans, A. R., Jones, D., Boyer, A. G., Brown, J. H., Costa, D. P., Morgan Ernest, S. K., Fitzgerald, E,. M. G.,, Fortelius, M., Gittleman, J. L., Hamilton, M. J., Harding, L. E., Lintulaakso, K., Lyons, S.K., Okie, J. G., Saarinen, J. J., Siblyo, R. M., Smith, F. A., Stephens, P. R., Theodor, J. M., & Uhen, M. D.. (2012) The maximal rate of mammal evolution. Proceedings of the National Academy of Sciences of the USA,doi/10.1073/pnas.1120774109.

  • Feng, A. S., Narins, P. M., Xu, C. H., Lin, W. Y., Yu, Z. L., Qiu, Q., Xu, Z. M., Shen, J. X. (2006). Ultrasonic communication in frogs. Nature, 440, 333–336.

    Article  CAS  PubMed  Google Scholar 

  • Gates, G. R., Saunders, J., & Bock, G. R. (1974). Peripheral auditory function in the platypus, Ornithorhynchus anatinus. Journal of the Acoustical Society of America, 56, 152–156.

    Article  CAS  PubMed  Google Scholar 

  • Gaupp, E. (1912). Die Reichertsche Theorie. Archives of Anatomy and Physiology Supplement, 1–416.

    Google Scholar 

  • Gendron-Maguire, M., Mallo, M., Zhang, M., & Gridley, T. (1993). Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell, 75, 1317–1331.

    Article  CAS  PubMed  Google Scholar 

  • Grammatopoulos, G. A., Bell, E., Toole, L., Lumsden, A., & Tucker, A. S. (2000). Homeotic transformation of branchial arch identity after Hoxa2 overexpression. Development, 127, 5355–5365.

    CAS  PubMed  Google Scholar 

  • Graybeal, A., Rosowski, J. J., Ketten, D. R., & Crompton, A. W. (1989). Inner-ear structure in Morganucodon, an early Jurassic mammal. Zoological Journal of the Linnean Society, 96, 107–117.

    Article  Google Scholar 

  • Hall, B. K., & Miyake, T. (1995). Divide, accumulate, differentiate: Cell condensation in skeletal development revisited. International Journal of Developmental Biology, 39, 881–893.

    CAS  PubMed  Google Scholar 

  • Heffner, R. S., Koay, G., & Heffner, H. E. (2001). Audiograms of five species of rodents: Implications for the evolution of hearing and the perception of pitch. Hearing Research, 157, 138–152.

    Article  CAS  PubMed  Google Scholar 

  • Hemilä, S., Nummela, S., & Reuter, T. (1995). What middle ear parameters tell about impedance matching and high frequency hearing. Hearing Research, 85, 31–44.

    Article  PubMed  Google Scholar 

  • Hotton, N. (1959). The pelycosaur tympanum and early evolution of the middle ear. Evolution, 13, 99–121.

    Article  Google Scholar 

  • Hurum, J. H. (1998). The inner ear of two late Cretaceous multituberculate mammals, and its implications for multituberculate hearing. Journal of Mammalian Evolution, 5, 65–93.

    Article  Google Scholar 

  • Jaskoll, T., & Maderson, P. (1978). A histological study of the development of the avian middle ear and tympanum. Anatomical Record, 190, 177–200.

    Article  CAS  PubMed  Google Scholar 

  • Kemp, T. S. (2007). Acoustic transformer function of the postdentary bones and quadrate of a nonmammalian cynodont. Journal of Vertebrate Paleontology, 27, 431–441.

    Article  Google Scholar 

  • Koentges, G., & Lumsden, A. (1996). Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development, 122, 3229–3242.

    CAS  Google Scholar 

  • Koentges, G., & Matsuoka, T. (2002). Evolution: Jaws of the fates. Science, 298, 371–373.

    Article  CAS  PubMed  Google Scholar 

  • Ladich, F., & Popper, A. N. (2004). Parallel evolution in fish hearing organs. In G. A. Manley, A. N. Popper, & R. R. Fay (Eds.), Evolution of the vertebrate auditory system. (pp. 95–127). New York: Springer.

    Chapter  Google Scholar 

  • Lucas, S. G., & Luo, Z. (1993). Adelobasileus from the upper Triassic of west Texas: The oldest mammal. Journal of Vertebrate Paleontology, 13, 309–334.

    Article  Google Scholar 

  • Luo, Z.-X. (2007). Transformation and diversification in early mammal evolution. Nature, 450, 1011–1019.

    Article  CAS  PubMed  Google Scholar 

  • Luo, Z.-X. (2011). Developmental patterns in Mesozoic evolution of mammal ears. Annual Review of Ecology and Evolution Systematics, 42, 355–380.

    Article  Google Scholar 

  • Luo, Z., & Ketten, D. R. (1991). CT scanning and computerized reconstructions of the inner ear of multituberculate mammals. Journal of Vertebrate Paleontology, 11, 220–228.

    Article  Google Scholar 

  • Luo, Z-X., Crompton, A. W., & Sun, A. L. (2001). A new mammaliaform from the early Jurassic and evolution of mammalian characteristics. Science, 292, 1535–1540.

    Article  CAS  PubMed  Google Scholar 

  • Luo, Z-X., Rif, I., Schultz, J. A., & Martin, T. (2010). Fossil evidence on evolution of inner ear cochlea in Jurassic mammals. Proceedings of the Royal Society B: Biological Sciences, 278, 28–34.

    Article  PubMed Central  PubMed  Google Scholar 

  • Maier, W. (1990). Phylogeny and ontogeny of mammalian middle ear structures. Netherlands Journal of Zoology, 40, 55–74.

    Article  Google Scholar 

  • Mallo, M. (2001). Formation of the middle ear: Recent progress on the developmental and molecular mechanisms. Developmental Biology, 231, 410–419.

    Article  CAS  PubMed  Google Scholar 

  • Mallo, M., Schrewe, H., Martin, J. F., Olson, E. N., & Ohnemus, S. (2000). Assembling a functional tympanic membrane: Signals from the external acoustic meatus coordinate development of the malleal manubrium. Development, 127, 4127–4136.

    CAS  PubMed  Google Scholar 

  • Manley, G. A. (1972) Frequency response of the middle ear of geckos. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 81, 251–258.

    Article  Google Scholar 

  • Manley, G. A. (1973). A review of some current concepts of the functional evolution of the ear in terrestrial vertebrates. Evolution, 26, 608–621.

    Article  Google Scholar 

  • Manley, G. A. (2000). Cochlear mechanisms from a phylogenetic viewpoint. Proceedings of the National Academy of Sciences of the USA, 97, 11736–11743.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manley, G. A. (2010). An evolutionary perspective on middle ears. Hearing Research, 263, 3–8.

    Article  PubMed  Google Scholar 

  • Manley, G. A. (2011). Vertebrate hearing: Origin, evolution and functions. In F. G. Barth, H.-D. Klein, & P. Giampieri-Deutsch (Eds.), Sensory perception: Mind and matter (pp. 23–40). Vienna, New York: Springer.

    Google Scholar 

  • Manley, G.A. (2012) Evolutionary paths to mammalian cochleae. JARO 13, 733–743.

    Google Scholar 

  • Manley, G. A., & Johnstone, B. M. (1974). Middle-ear function in the guinea pig. Journal of the Acoustical Society of America, 56, 571–576.

    Article  CAS  PubMed  Google Scholar 

  • Manley, G. A., & Köppl, C. (1998). Phylogenetic development of the cochlea and its innervation. Current Opinion in Neurobiology, 8, 468–474.

    Article  CAS  PubMed  Google Scholar 

  • Manley, G. A., & Clack, J. A. (2004). An outline of the evolution of vertebrate hearing organs. In G. A. Manley, A. N. Popper, & R. R. Fay (Eds.), Evolution of the vertebrate auditory system (pp. 1–26). New York: Springer.

    Chapter  Google Scholar 

  • Manley, G. A., & Kraus, J. E. M. (2010). Exceptional high-frequency hearing and matched vocalizations in Australian pygopod geckos. Journal of Experimental Biology, 213, 1876–1885.

    Article  PubMed  Google Scholar 

  • Martin, T., & Luo, Z-X. (2005). Homoplasy in the mammalian ear. Science, 307, 861–862.

    Article  CAS  Google Scholar 

  • Masterton, B., Heffner, H., & Ravizza, R. (1969). The evolution of mammalian hearing. Journal of the Acoustical Society of America, 45, 966–985.

    Article  CAS  PubMed  Google Scholar 

  • Meng, J., Wang, Y., & Li, C. (2011). Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature, 472, 181–185.

    Article  CAS  PubMed  Google Scholar 

  • MĂĽller, J., & Tsuji, L. A. (2007). Impedance-matching hearing in paleozoic reptiles: Evidence of advanced sensory perception at an early stage of amniote evolution. PLoS ONE, 2, e889.

    Article  PubMed Central  PubMed  Google Scholar 

  • Noden, D. M. (1991). Cell movements and control of patterned tissue assembly during craniofacial development. Journal of Craniofacial Genetics and Developmental Biology, 11, 192–213.

    CAS  PubMed  Google Scholar 

  • Novacek, M. J. (1977). Aspects of the problem of variation, origin and evolution of the eutherian auditory bulla. Mammal Reviews, 7, 131–149.

    Article  Google Scholar 

  • Obrist, M. K., Fenton, M. B., Eger, J. L., & Schlegel, P. A. (1993). What ears do for bats: A comparative study of pinna sound pressure transformation in Chiroptera. Journal of Experimental Biology, 180, 119–152.

    CAS  PubMed  Google Scholar 

  • O’Gorman, S. (2005). Second branchial arch lineages of the middle ear of wild-type and Hoxa2 mutant mice. Developmental Dynamics, 234, 124–131.

    Article  PubMed  Google Scholar 

  • Plant, M. R., MacDonald, M. E., Grad, L. I., Ritchie, S. J., & Richman, J. M. (2000). Locally released retinoic acid repatterns the first branchial arch cartilages in vivo. Developmental Biology, 222, 12–26.

    Article  CAS  PubMed  Google Scholar 

  • Puria, S., & Steele, C. R. (2008) Mechano-acoustical transformations. In R. R. Hoy, G. M. Shepherd, A. I. Basbaum, A. Kaneko, & G. Westheimer (Eds.), The senses: A comprehensive reference (pp. 165–201). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Qiu, M., Bulfone, A., Martinez, S., Meneses, J. J., Shimamura, K., Pedersen, R. A., & Rubenstein, J. L. (1995). Null mutation of Dlx-2 results in abnormal morphogenesis of proximal first and second branchial arch derivatives and abnormal differentiation in the forebrain. Genes and Development, 9, 2523–2538.

    Article  CAS  PubMed  Google Scholar 

  • Reichert, K. B. (1837). Ăśber die Visceralbogen der Wirbelthiere im Allgemeinen und deren Metamorphosen bei den Vögeln und Säugethieren. Archiv der Anatomie, Physiologie und Wissenschaftliche Medizin, 1837, 120–220.

    Google Scholar 

  • Rich, T. H., Hopson, J. A., Musser, A. M., Flannery, T. F., & Vickers-Rich, P. (2005). Independent origins of middle ear bones in monotremes and therians. Science, 307, 910–914.

    Article  CAS  PubMed  Google Scholar 

  • Rijli, F. M., Mark, M., Lakkaraju, S., Dierich, A., DollĂ©, P., & Chambon, P. (1993). A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell, 75, 1333–1349.

    Article  CAS  PubMed  Google Scholar 

  • Rosowski, J. J. (1992). Hearing in transitional mammals: Predictions from the middle ear anatomy and hearing capabilities of extant mammals. In D. B. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 615–632). New York: Springer.

    Chapter  Google Scholar 

  • Rosowski, J. J. (1994). Outer and middle ears. In R. R. Fay & A. N. Popper (Eds.), Comparative hearing: Mammals (pp. 172–247). New York: Springer.

    Chapter  Google Scholar 

  • Rosowski, J. J., & Graybeal, A. (1991). What did Morganucodon hear? Zoological Journal of the Linnean Society, 101, 131–168.

    Article  Google Scholar 

  • Rowe, T. (1996). Coevolution of the mammalian middle ear and neocortex. Science, 273, 651–654.

    Article  CAS  PubMed  Google Scholar 

  • Rowe, T. B., Macrini, T. E., & Luo, Z-X. (2011). Fossil evidence on origin of the mammalian brain. Science, 332, 955–957.

    Article  CAS  PubMed  Google Scholar 

  • Ruf, I., Luo, Z-X., Wible, J. R., & Martin, T. (2009). Petrosal anatomy and inner ear structures of the Late Jurassic Henkelotherium (Mammalia, Cladotheria, Dryolestoidea): insight into the early evolution of the ear region in cladotherian mammals. Journal of Anatomy, 214, 679–693.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruggero, M. A., & Temchin, A. N. (2002). The roles of the external, middle, and inner ears in determining the bandwidth of hearing. Proceedings of the National Academy of Sciences of the USA, 99, 13206–13210.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schilling, T. F., Prince, V., & Ingham, P.W. (2001). Plasticity in zebrafish hox expression in the hindbrain and cranial neural crest. Developmental Biology, 231, 201–216.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, R. A., & Helms, J. A. (2003). The cellular and molecular origins of beak morphology. Science, 299, 565–568.

    Article  CAS  PubMed  Google Scholar 

  • Shigetani, Y., Sugahara, F., Kawakami, Y., Murakami, Y., Hirano, S., & Kuratani, S. (2002). Heterotopic shift of epithelial-mesenchymal interactions in vertebrate jaw evolution. Science, 296, 1316–1319.

    Article  CAS  PubMed  Google Scholar 

  • Sienknecht, U. J., & Fekete, D. M. (2008). Comprehensive Wnt-related gene expression during cochlear duct development in chicken. Journal of Comparative Neurology, 510, 378–395.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smotherman, M., & Narins, P. (2004). Evolution of the amphibian ear. In G. A. Manley, A. N. Popper, & Fay, R. R. (Eds.), Evolution of the vertebrate auditory system. (pp. 164–199). New York: Springer.

    Chapter  Google Scholar 

  • Takechi, M., & Kuratani, S. (2010). History of studies on mammalian middle ear evolution: A comparative morphological and developmental biology perspective. Journal of Experimental Zoology B: Molecular and Developmental Evolution, 314B, 417–433.

    Article  Google Scholar 

  • Taylor, G. D. (1969). Evolution of the ear. Laryngoscope, 79, 638–651.

    Article  CAS  PubMed  Google Scholar 

  • Trainor, P., & Krumlauf, R. (2000). Plasticity in mouse neural crest cells reveals a new patterning role for cranial mesoderm. Nature Cell Biology, 2, 96–102.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Hu Y., Meng J., & Li, C. (2001). An ossified Meckel’s cartilage in two cretaceous mammals and origin of the mammalian middle ear. Science, 294, 357–361.

    Article  CAS  PubMed  Google Scholar 

  • Xu, P. X., Adams, J., Peters, H., Brown, M. C., Heaney, S., & Maas, R. (1999). Eya1–deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nature Genetics, 23, 113–117.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey A. Manley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Manley, G.A., Sienknecht, U.J. (2013). The Evolution and Development of Middle Ears in Land Vertebrates. In: Puria, S., Fay, R., Popper, A. (eds) The Middle Ear. Springer Handbook of Auditory Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6591-1_2

Download citation

Publish with us

Policies and ethics