Skip to main content

Vacuum Vector Representations of the Virasoro Algebra

  • Conference paper
Vertex Operators in Mathematics and Physics

Part of the book series: Mathematical Sciences Research Institute Publications ((MSRI,volume 3))

Abstract

A lot of attention has been focused lately on certain infinite dimensional Lie algebras for their importance in some physical theories as well as the richness of their mathematical theories. One of these algebras is the Virasoro algebra. The Virasoro algebra is known to physicists in the theory of dual string models (cf. [25]). The first mathematical reference on the Virasoro algebra that is known to us is by Gelfand and Fuchs [9]. They proved that the second cohomology of the Lie algebra v of polynomial vector fields on the circle is one-dimensional. Using this one can show that the Virasoro algebra is the universal central extension \( \mathop{v}\limits^{ \wedge } \) of v (see ยง4 below). The Virasoro algebra was later realized as an algebra of operators on the representation space of a Kac-Moody algebra (cf. [5, 3, 11, 17]), in a way reminiscent of its earlier introduction in dual models.

Partially supported by National Science Foundation Grant MCS-8201260.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.L. Feigin and D.B. Fuchs, Functs. Anal. Prilozhen. 16, No. 2 (1982), 47โ€“63.

    Google Scholarย 

  2. B.L. Feigin and D.B. Fuchs, Functs. Anal. Prilozhen. 17, No. 3 (1983), 91โ€“92.

    MATHย  Google Scholarย 

  3. I. Frenkel, J. Funct. Anal. 44 (1981), 259โ€“327.

    Articleย  MATHย  MathSciNetย  Google Scholarย 

  4. I. Frenkel, Representations of Kac-Moody Algebras and Dual Resonace Models, Proc. 1982 Summer Semiar on Applications of Group Theory in Physics and Mathematical Physics, Lectures in Applied Math., A.M.S. 21 (1984)

    Google Scholarย 

  5. I. Frenkel and V.G. Kac, Invent. Math. 62 (1980), 23โ€“66.

    Articleย  MATHย  ADSย  MathSciNetย  Google Scholarย 

  6. D. Friedan, Z. Qiu and S.H. Shenker, Conformai Invariance, Unitarity and Two dimensional critical exponents, these Proceedings.

    Google Scholarย 

  7. D. Friedan, Z. Qiu and S.H. Shenker, Phys. Rev. Lett. 52 (1984), 1575.

    Articleย  ADSย  MathSciNetย  Google Scholarย 

  8. H. Garland, Public. Math. No. 52, I.H.E.S.

    Google Scholarย 

  9. I.M. Gelfand and D.B. Fuchs, Functs. Anal. Prilozhen. 2 (1968), 92โ€“93.

    Google Scholarย 

  10. L.V. Goncharova, Functs. Anal. Prilozhen. 7, No. 2 (1973), 6โ€“14.

    Google Scholarย 

  11. L.V. Goncharova, Functs. Anal. Prilozhen. 7, No. 3 (1973), 33โ€“44.

    Google Scholarย 

  12. R. Goodman and N.R. Wallach, Journal fur die reine und angew. Math., 347 (1984), 69โ€“133.

    Articleย  MATHย  MathSciNetย  Google Scholarย 

  13. G.H. Hardy and E.M. Wright, An Introduction to the theory of numbers, Clarendon Press, Oxford (1965).

    Google Scholarย 

  14. V.G. Kac, Proceedings of the International Congress of mathematicians, Helsinki (1978).

    Google Scholarย 

  15. V.G. Kac, Lecture Notes in Physics 94 (1979), 441.

    Google Scholarย 

  16. V.G. Kac, Lecture Notes in Math. 933 (1982) 117โ€“126.

    Google Scholarย 

  17. V.G. Kac and D.H. Peterson, Infinite-Dimensional Lie Algebras, Theta Functions and Modular Forms, preprint.

    Google Scholarย 

  18. E. Looijenga, Invent. Math. 38, (1976), 17โ€“32.

    Articleย  MATHย  ADSย  MathSciNetย  Google Scholarย 

  19. A. Rocha-Caridi, Lecture Notes in Math 933 (1982), 176โ€“190.

    Google Scholarย 

  20. A. Rocha-Caridi and N.R. Wallach, Math. Z. 180 (1982), 151โ€“177.

    Articleย  MATHย  MathSciNetย  Google Scholarย 

  21. A. Rocha-Caridi and N.R. Wallach, Transactions of the A.M.S. 277, No. 1 (1983),

    Articleย  MathSciNetย  Google Scholarย 

  22. A. Rocha-Caridi and N.R. Wallach, Invent. Math. 72 (1983), 57โ€“75.

    Articleย  MATHย  ADSย  MathSciNetย  Google Scholarย 

  23. A. Rocha-Caridi and N.R. Wallach, Math. Z. 185 (1984), 1โ€“21.

    Articleย  MATHย  MathSciNetย  Google Scholarย 

  24. G. Segal, Commun. Math. Phys. 80 (1981), 301โ€“342.

    Articleย  MATHย  ADSย  Google Scholarย 

  25. J. Schwarz, Phys. Rep. 8C (1973), 269โ€“335.

    Articleย  ADSย  Google Scholarย 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

ยฉ 1985 Springer-Verlag New York Inc.

About this paper

Cite this paper

Rocha-Caridi, A. (1985). Vacuum Vector Representations of the Virasoro Algebra. In: Lepowsky, J., Mandelstam, S., Singer, I.M. (eds) Vertex Operators in Mathematics and Physics. Mathematical Sciences Research Institute Publications, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9550-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9550-8_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9552-2

  • Online ISBN: 978-1-4613-9550-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics