Skip to main content

Structural Aspects of Hydrogen Bonding with Nitrate and Sulfate

Design criteria for polyalcohol hosts

  • Chapter
Fundamentals and Applications of Anion Separations

Abstract

Anion recognition by synthetic hosts is a rapidly emerging field.1–4 One of the challenges is the development of receptors that selectively bind polyatomic oxyanions, such as NO3 and SO4 2−, which are important targets for environmental, industrial, and health-related applications. A successful approach for preparing molecules that coordinate with anions has been to add hydrogen-bond donors to an organic scaffold to yield charge-neutral receptors that interact with anions through hydrogen bonding.5–12 Because hydrogen bonds are directional, it should be possible to design hosts with shaped cavities that are capable of differentiating between anionic guests with different geometries. The deliberate design of host architecture requires knowledge of the structural aspects of hydrogen bonding with the guest anion. Yet, surprisingly little attention has been given to this critical facet of anion host design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6 References

  1. Supramolecular Chemistry of Anions, edited by A. Bianchi, K. Bowman-James, and E. García-spaña (Wiley-VHC, New York, 1997).

    Google Scholar 

  2. P. A. Gale, Anion coordination and anion-directed assembly: highlights from 1997 and 1998, Coord. Chem. Rev. 199, 181–233 (2000).

    Article  CAS  Google Scholar 

  3. P. A. Gale, Anion receptor chemistry: highlights from 1999, Coord. Chem. Rev. 213, 79–128 (2001).

    Article  CAS  Google Scholar 

  4. P. D. Beer and P. A. Gale, Anion recognition and sensing: the state of the art and future perspectives, Angew. Chem. Int. Ed. 40, 486–516 (2001).

    Article  CAS  Google Scholar 

  5. W. B. Farnham, D. C. Roe, D. A. Dixon, R. L. Harlow, and J. C. Calabrese, Fluorinated macrocyclic ethers as flouride-ion hosts-novel structures and dynamic properties, J. Am. Chem. Soc. 112, 7707–718 (1990).

    Article  CAS  Google Scholar 

  6. A. P. Bisson, V. M. Lynch, M. K. C. Monahan, and E. V. Anslyn, Recognition of anions through NH-pi hydrogen bonds in a bicyclic cyclophane — selectivity for nitrate, Angew. Chem. Int. Ed. 36, 2340–2342, (1997).

    Article  CAS  Google Scholar 

  7. A. P. Davis, J. J. Perry, and R. P. Williams, Anion recognition by tripodal receptors derived from cholic acid, J. Am. Chem. Soc. 119, 1793–1794 (1997).

    Article  CAS  Google Scholar 

  8. K. Kavallieratos, S. R. de Gala, D. J. Austin, and R. H. Crabtree, A readily available non-preorganized neutral acyclic halide receptor with an unusual non-planar binding conformation, J. Am. Chem. Soc. 119, 2325–2326 (1997).

    Article  CAS  Google Scholar 

  9. P. Anzenbacher, Jr., K, Jursíková, and J. L. Sessler, Second generation calixpyrrole anion sensors, J. Am. Chem. Soc. 122, 9350–9351 (2000).

    Article  CAS  Google Scholar 

  10. K. Kavallieratos and B. A. Moyer, Attenuation of Hofrneister bias in ion-pair extraction by a disulfonamide anion host used in strikingly effective synergistic combination with a calix-crown Cs† host, Chem. Commun. 1620–1621 (2001).

    Google Scholar 

  11. P. A. Gale, S. Camiolo, C. P. Chapman, M. E. Light, and M. B. Hursthouse, Hydrogen-bonding pyrrolic amide cleft anion receptors, Tetrahedron Lett. 42, 5095–5097 (2001).

    Article  CAS  Google Scholar 

  12. K. Choi and A. D. Hamilton, Selective Anion binding by a macrocycle with convergent hydrogen bonding functionality, J. Am. Chem. Soc. 123, 2456–2457 (2001).

    Article  CAS  Google Scholar 

  13. G. A. Jeffrey, in: An Introduction to Hydrogen Bonding, edited by D. G. Truhlar (Oxford University Press, Oxford, 1997).

    Google Scholar 

  14. G. R. Desiraju and T. Steiner, in: The Weak Hydrogen Bond in Structural Chemistry and Biology (Oxford University Press, Oxford, 1999).

    Google Scholar 

  15. R. Taylor and O. Kennard, Crystallographic evidence for the existence of C-H•••O, C-H•••N, and C-H•••Cl hydrogen bonds, J. Am. Chem. Soc. 104, 5063–5070 (1982).

    Article  CAS  Google Scholar 

  16. R. Taylor, O. Kennard, and W. Versichel, Geometry of the N-H•••O=C hydrogen bond. 1. Lone-pair directionality, J. Am. Chem. Soc. 105, 5761–5766 (1983).

    Article  CAS  Google Scholar 

  17. P. Murray-Rust and J. P. Glusker, Directional hydrogen bonding to Sp2-and sp3-hybridzed oxygen atoms and its relevance to ligand-macrocycle interactions, J. Am. Chem. Soc. 106, 1018–1025 (1984).

    Article  CAS  Google Scholar 

  18. T. Steiner, J. A. Kanters, and J. Kroon, Acceptor directionality of sterically unhindered C-H•••O=C hydrogen bonds donated by acidic C-H groups, Chem. Commun. 1277–1278 (1996).

    Google Scholar 

  19. T. Steiner, Unrolling the hydrogen bond properties of C-H•••O interactions, Chem. Commun. 727–734 (1997).

    Google Scholar 

  20. B. P. Hay, D. A. Dixon, J. C. Bryan, and B. A. Moyer, Crystallographic evidence for oxygen acceptor directionality in oxyanion hydrogen bonds, J. Am. Chem. Soc. 124, 182–183 (2002).

    Article  CAS  Google Scholar 

  21. J. J. P. Stewart, Optimization of parameters for semiempirica methods, J. Comp. Chem. 10, 209–220 (1989).

    Article  CAS  Google Scholar 

  22. MacSpartan Pro User’s Guide (Wave Function, Inc., Irvine, California, 2000); http://www.wavefun.com.

    Google Scholar 

  23. R. G. Parr and W. Yang, in: Density Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989).

    Google Scholar 

  24. Density Functional Methods in Chemistry, edited by J. K. Labanowski and J. W. Andzelm (Springer-Verlag, New York, 1991).

    Google Scholar 

  25. A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38, 3098–3100 (1988).

    Article  CAS  Google Scholar 

  26. J. P. Perdew, Density-functional approximation for the correlation-energy of the inhomogeneous electron-gas, Phys Rev. B 33, 8822–8824 (1986).

    Article  Google Scholar 

  27. C. T. Lee, W. T. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density, Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  28. N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer, Optimization of Gaussian-type basis-sets for local spin-density functional calculations. 1. Boron through neon, optimization technique and validation, Can. J. Chem. 70, 560–571 (1992).

    Article  CAS  Google Scholar 

  29. D. E. Bemholdt, E. Apra, H. A. Fruchtl, M. F. Guest, R. J. Harrison, R. A. Kendall, R. A. Kutteh, X. Long, J. B. Nicholas, J. A. Nichols, H. L. Taylor, A. T. Wong, G. I. Fan, R. J. Littlefield, and J. Nieplocha, Parallel computational chemistry made easier — the development of NWChem, Int. J. Quantum Chem. Symp. 29, 475–483 (1995).

    Article  Google Scholar 

  30. R. J. Harrison, J. A. Nichols, T. P. Straatsma, M. Dupuis, E. J. Bylaska, G. I. Fann, T. L. Windus, E. Aprà, J. Anchell, D. Bemholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, B. de Jong, M. Deegan, K. Dyall, D. Elwood, H. Fruchtl, E. Glendenning, M. Gutowski, A. C. Hess, J. Jaffe, B. Johnson, J. Ju, R. A. Kendall, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, J. Nieplocha, S. Niu, M. Rosing, G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. van Lenthe, K. Wolinski, A. Wong, and Z Zhang, NWChem, A Computational Chemistry Package for Parallel Computers, version 4.0.1, William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USA, (2001).

    Google Scholar 

  31. F. H. Allen and O. Kennard, 3D search and research using the Cambridge Structural Database, Chemical Design Automation News 8(1), 31–37 (1993).

    Google Scholar 

  32. N. L. Allinger, M. Rahman, and J.-H. Lii, A molecular mechanics force field (MM3) for alcohols and ethers, J. Am. Chem. Soc. 112, 8293–8307 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hay, B.P., Dixon, D.A., Lumetta, G.J., Vargas, R., Garza, J. (2004). Structural Aspects of Hydrogen Bonding with Nitrate and Sulfate. In: Moyer, B.A., Singh, R.P. (eds) Fundamentals and Applications of Anion Separations. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8973-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8973-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4742-2

  • Online ISBN: 978-1-4419-8973-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics