Skip to main content

Divide and Conquer Strategies for Protein Structure Prediction

  • Chapter
  • First Online:

Abstract

In this chapter, we discuss some approaches to the problem of protein structure prediction by addressing “simpler” sub-problems. The rationale behind this strategy is to develop methods for predicting some interesting structural characteristics of the protein, which can be useful per se and, at the same time, can be of help in solving the main problem. In particular, we discuss the problem of predicting the protein secondary structure, which is at the moment one of the most successful sub-problems addressed in computational biology. Available secondary structure predictors are very reliable and can be routinely used for annotating new genomes or as input for other more complex prediction tasks, such as remote homology detection and functional assignments. As a second example, we also discuss the problem of predicting residue–residue contacts in proteins. In this case, the task is much more complex than secondary structure prediction, and no satisfactory results have been achieved so far. Differently from the secondary structure sub-problem, the residue–residue contact sub-problem is not intrinsically simpler than the prediction of the protein structure, since a roughly correctly predicted set of residue–residue contacts would directly lead to prediction of a protein backbone very close to the real structure. These two protein structure sub-problems are discussed in the light of the current evaluation of the performance that are based on periodical blind-checks (CASP meetings) and permanent evaluation (EVA servers).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://predictioncenter.org/

  2. 2.

    http://cubic.bioc.columbia.edu/eva/

  3. 3.

    BAliBASE3 database: http://www-bio3d-igbmc.u-strasbg.fr/balibase/

  4. 4.

    Jalview software: http://www.jalview.org/

  5. 5.

    http://cubic.bioc.columbia.edu/eva/doc/intro_sec.html

  6. 6.

    http://www.predictprotein.org/

  7. 7.

    http://bioinf.cs.ucl.ac.uk/psipred/

  8. 8.

    http://cubic.bioc.columbia.edu/eva/doc/intro_con.html

  9. 9.

    http://gpcr.biocomp.unibo.it/cgi/predictors/cornet/pred_cmapcgi.cgi

  10. 10.

    http://cubic.bioc.columbia.edu/services/profcon/

  11. 11.

    http://compbio.soe.ucsc.edu/SAM_T06/T06-query.html

References

  1. Aloy, P., Stark, A., Hadley, C., Russell, R.B.: Predictions without templates: new folds, secondary structure, and contacts in CASP5. Proteins 53, 436–456 (2003)

    Article  PubMed  CAS  Google Scholar 

  2. Altschul, S.F., Madden, T.L., Schffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    Article  PubMed  CAS  Google Scholar 

  3. Bartoli, L., Capriotti, E., Fariselli, P., Martelli, P.L., Casadio, R.: The pros and cons of predicting protein contact maps. Methods Mol Biol. 413, 199–217 (2008)

    PubMed  CAS  Google Scholar 

  4. Benner, S.A., Gerloff, D.: Patterns of divergence in homologous proteins as indicators of secondary and tertiary structure: a prediction of the structure of the catalytic domain of protein kinases. Adv. Enzyme Regul. 31, 121–181 (1991)

    Article  PubMed  CAS  Google Scholar 

  5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2007)

    Google Scholar 

  6. Chou, P.Y., Fasman, G.D.: Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry 13, 211–222 (1974)

    Article  PubMed  CAS  Google Scholar 

  7. Cozzetto, D., Tramontano, A.: Advances and pitfalls in protein structure prediction. Curr Protein Pept Sci. 9, 567–577 (2008)

    Article  PubMed  CAS  Google Scholar 

  8. Dayhoff, M.O.: Atlas of Protein Sequence and Structure. National Biomedical Research Foundation, Washington DC (1978)

    Google Scholar 

  9. Di Lena, P., Fariselli, P., Margara, L., Vassura, M., Casadio, R.: On the Upper Bound of the Prediction Accuracy of Residue Contacts in Proteins with Correlated Mutations: The Case Study of the Similarity Matrices. Lecture Notes in Computer Science 5488, 210–221 (2009)

    Article  Google Scholar 

  10. Edgar, R.C.: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004)

    Article  PubMed  CAS  Google Scholar 

  11. Ezkurdia, I., Graña, O., Izarzugaza, J.M., Tress, M.L.: Assessment of domain boundary predictions and the prediction of intramolecular contacts in CASP8. Proteins 77, 196–209 (2009)

    Article  PubMed  CAS  Google Scholar 

  12. Fariselli, P., Olmea, O., Valencia, A., Casadio, R.: Prediction of contact maps with neural networks and correlated mutations. Protein Eng. 14, 835–843 (2001)

    Article  PubMed  CAS  Google Scholar 

  13. Fariselli, P., Olmea, O., Valencia, A., Casadio, R.: Progress in predicting inter-residue contacts of proteins with neural networks and correlated mutations. Proteins 5, 157–162 (2001)

    Article  PubMed  Google Scholar 

  14. Fodor, A.A., Aldrich, R.W.: Influence of conservation on calculations of amino acid covariance in multiple sequence alignments. Proteins 56, 211–221 (2004)

    Article  PubMed  CAS  Google Scholar 

  15. Garcia-Boronat, M., Diez-Rivero, C.M., Reinherz, E.L., Reche, P.A.: PVS: a web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery. Nucleic Acids Res. 36, 35–41 (2008)

    Article  Google Scholar 

  16. Garnier, J., Osguthorpe, D.J., Robson, B.: Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120, 97–120 (1978)

    Article  PubMed  CAS  Google Scholar 

  17. Göbel, U., Sander, C., Schneider, R., Valencia, A.: Correlated mutations and residue contacts in proteins. Proteins 18, 309–317 (1994)

    Article  PubMed  Google Scholar 

  18. Graña, O., Baker, D., MacCallum, R.M., Meiler, J., Punta, M., Rost, B., Tress, M.L., Valencia, A.: CASP6 assessment of contact prediction. Proteins 61, 214–224 (2005)

    Article  PubMed  Google Scholar 

  19. Horner, D.S., Pirovano, W., Pesole, G.: Correlated substitution analysis and the prediction of amino acid structural contacts. Brief. Bioinform. 9, 46–56 (2008)

    Article  PubMed  CAS  Google Scholar 

  20. Izarzugaza, J.M., Graña, O., Tress, M.L., Valencia, A., Clarke, N.D.: Assessment of intramolecular contact predictions for CASP7. Proteins 69, 152–158 (2007)

    Article  PubMed  CAS  Google Scholar 

  21. Jones, D.T.: Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999)

    Article  PubMed  CAS  Google Scholar 

  22. Jones, D.T., Taylor, W.R., Thornton, J.M.: A model recognition approach to the pre-diction of all-helical membrane protein structure and topology. Biochemistry 33, 3038–3049 (1994)

    Article  PubMed  CAS  Google Scholar 

  23. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983)

    Article  PubMed  CAS  Google Scholar 

  24. Karplus, K., Barrett, C., Hughey, R.: Hidden Markov models for detecting remote protein homologies. Bioinformatics 14, 846–856 (1998)

    Article  PubMed  CAS  Google Scholar 

  25. Karplus, K., Katzman, S., Shackleford, G., Koeva, M., Draper, J., Barnes, B., Soriano, M., Hughey, R.: SAM-T04: what is new in protein-structure prediction for CASP6. Proteins 61, 135–142 (2005)

    Article  PubMed  CAS  Google Scholar 

  26. Lesk, A.: Introduction to Bioinformatics. Oxford University Press, London (2006)

    Google Scholar 

  27. Lin, K., Simossis, V.A., Taylor, W.R., Heringa, J.: A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics 21, 152–159 (2005)

    Article  PubMed  CAS  Google Scholar 

  28. McLachlan, A.D.: Tests for comparing related amino-acid sequences. Cytochrome c and cytochrome c 551. J. Mol. Biol. 61, 409–424 (1971)

    Google Scholar 

  29. Notredame, C., Higgins, D.G., Heringa, J.: T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol. 302, 205–217 (2000)

    Article  PubMed  CAS  Google Scholar 

  30. Ouali, M., King, R.D.: Cascaded multiple classifiers for secondary structure pre-diction. Protein Sci. 9, 1162–1176 (2000)

    Article  PubMed  CAS  Google Scholar 

  31. Pauling, L., Corey, R.B.: Configurations of polypeptide chains with favored orientations around single bonds: two new pleated sheets. Proc. Natl. Acad. Sci. USA 37, 729–740 (1951)

    Article  PubMed  CAS  Google Scholar 

  32. Pauling, L., Corey, R.B., Branson, H.R.: The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. USA 37, 205–211 (1951)

    Article  PubMed  CAS  Google Scholar 

  33. Pollastri, G., McLysaght, A.: Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21, 1719–1720 (2005)

    Article  PubMed  CAS  Google Scholar 

  34. Pollastri, G., Przybylski. D., Rost, B., Baldi, P.: Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 47, 228–235 (2002)

    Google Scholar 

  35. Pollock, D.D., Taylor, W.R.: Effectiveness of correlation analysis in identifying protein residues undergoing correlated evolution. Protein 10, 647–657 (1997)

    Article  CAS  Google Scholar 

  36. Porollo, A., Adamczak, R., Wagner, M., Meller, J.: Maximum Feasibility Approach for Consensus Classifiers: Applications to Protein Structure Prediction. In proceedings of CIRAS 2003

    Google Scholar 

  37. Przybylski, D., Rost, B.: Alignments grow, secondary structure prediction improves. Proteins 46, 197–205 (2002)

    Article  PubMed  CAS  Google Scholar 

  38. Punta, M., Rost, B.: PROFcon: novel prediction of long-range contacts. Bioinformatics 21, 2960–2968 (2005)

    Article  PubMed  CAS  Google Scholar 

  39. Raghava, G.P.S.: APSSP2: A combination method for protein secondary structure prediction based on neural network and example based learning. CASP5 A-132 (2002)

    Google Scholar 

  40. Rost, B.: http://cubic.bioc.columbia.edu/predictprotein

  41. Rost, B.: Rising accuracy of protein secondary structure prediction. In: Chasman D (ed.) Protein structure determination, analysis, and modeling for drug discovery, pp. 207–249. Dekker, New York (2003)

    Chapter  Google Scholar 

  42. Rost, B., Sander, C.: Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232, 584–599 (1993)

    Article  PubMed  CAS  Google Scholar 

  43. Rost, B., Sander, C.: Third generation prediction of secondary structures. Methods Mol. Biol. 143, 71–95 (2000)

    PubMed  CAS  Google Scholar 

  44. Sander, C., Schneider, R.: Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9, 56–68 (1991)

    Article  PubMed  CAS  Google Scholar 

  45. Shackelford, G., Karplus, K.: Contact prediction using mutual information and neural nets. Proteins 69,159–164 (2007)

    Article  PubMed  CAS  Google Scholar 

  46. Sjölander, K., Karplus, K., Brown, M., Hughey, R., Krogh, A., Mian, I.S., Haussler, D.: Dirichlet mixtures: a method for improved detection of weak but significant protein sequence homology. Comput. Appl. Biosci. 12, 327–345 (1996)

    PubMed  Google Scholar 

  47. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)

    Article  PubMed  CAS  Google Scholar 

  48. Ward, J.J., McGuffin, L.J., Buxton, B.F., Jones, D.T.: Secondary structure prediction with support vector machines. Bioinformatics 19, 1650–1655 (2003)

    Article  PubMed  CAS  Google Scholar 

  49. Wootton, J.C., Federhen, S.: Statistics of local complexity in amino acid sequences and sequence databases. Comput. Chem. 17,149–163 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Di Lena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer New York

About this chapter

Cite this chapter

Di Lena, P., Fariselli, P., Margara, L., Vassura, M., Casadio, R. (2011). Divide and Conquer Strategies for Protein Structure Prediction. In: Bruni, R. (eds) Mathematical Approaches to Polymer Sequence Analysis and Related Problems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6800-5_2

Download citation

Publish with us

Policies and ethics