Skip to main content

Physical Processes at the Source of a Tsunami of Seismotectonic Origin

  • Chapter
Physics of Tsunamis
  • 2472 Accesses

Modern ideas are presented concerning the source of an earthquake and the seismotectonic source of a tsunami. The main physical processes taking place at a tsunami source are described. Estimation is performed of the role of secondary effects: displacements of the bottom, occurring in its own plane, Coriolis force, and density stratification of the water. The Okada formulae are presented, and the technique is exposed for calculating residual bottom deformations caused by an underwater earthquake. Within the framework of linear potential theory of an incompressible liquid in a basin of fixed depth, the general analytical solution is constructed for the two-dimensional (2D) and three-dimensional (3D) problems of tsunami generation by bottom deformations of small amplitudes. The solution of the 3D problem is constructed in both Cartesian and cylindrical coordinates. For a series of model bottom deformation laws (piston, membrane and running displacements, bottom oscillations and alternating-sign displacement) physical regularities are revealed that relate the amplitude, energy and direction of tsunami wave emission to peculiarities of the bottom deformation at the source. In some cases, the theoretical regularities, obtained within potential theory, are compared with dependences following from the linear theory of long waves and, also, with the results of laboratory experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abe K. (1978): A dislocation model of the 1933 Sanriku earthquake consistent with tsunami waves. J. Phys. Earth. 26(4) 381–396

    Google Scholar 

  • Basov B. I., Kaistrenko V. M., Levin B. W., et al. (1984): Some results of physical simulation of tsunami wave excitation and propagation. In: Tsunami generation and wave runup on shore. Radiosvyaz, Moscow (in Russian), pp. 68–72

    Google Scholar 

  • Belokon' V. I., Goi A. A., Reznik B. L., Smal' N. A. (1986): Tsunami excitation by a seismic wave packet subject to dispersion. Tsunami researches (in Russian), (1) 28–36 Moscow

    Google Scholar 

  • Bobrovich A. V. (1988): Tsunami wave excitation by fissure propagating on the bottom. In: Theoretical foundations, methods and technical means of tsunami prognosis. Theses of reports to symposium (in Russian). Obninsk. pp. 36–37

    Google Scholar 

  • Chubarov L. B., Shokin Yu. I., Simonov K. V. (1992): Using Numerical Modelling to Evaluate Tsunami Hazard Near the Kuril Island. Nat. Hazard. (5) 293–318

    Google Scholar 

  • Dotsenko S. F., Sergeevsky B. Yu., Cherkesov L. V. (1986): Spatial tsunami waves, caused by ocean surface displacements alternating in sign. Tsunami researches (in Russian), (1) 7–14, Moscow

    Google Scholar 

  • Dotsenko S. F., Soloviev S. L. (1988): Mathematical simulation of tsunami excitation by dislocation of ocean bottom. Sci. Tsunami Hazards 6(1) 31–36

    Google Scholar 

  • Dotsenko S. F., Soloviev S. L. (1990a): Mathematical modelling of tsunami excitation processes by displacements of the ocean bottom. Tsunami researches (in Russian), (4) 8–20, Moscow

    Google Scholar 

  • Dotsenko S. F., Soloviev S. L. (1990b): Comparative analysis of tsunami excitation by ‘piston’ and ‘membrane’ bottom displacements. Tsunami researches (in Russian), (4) 21–27

    Google Scholar 

  • Dotsenko S. F., Sergeevsky B. Yu. (1993): Dispersion effects during directed tsunami wave generation and propagation. Tsunami researches (in Russian), (5) 21–32 Moscow

    Google Scholar 

  • Dotsenko S. F., Soloviev S. L. (1995): On the role of residual displacements of the ocean bottom in tsunami generation by submarine earthquakes. Oceanology (in Russian), 35(1) 25–31

    Google Scholar 

  • Dotsenko S. F. (1996): The influence of ocean floor residual displacements on the efficiency of directed tsunami generation. Izvestiya — Atmos. Ocean Phys. 31(4) 547–553

    Google Scholar 

  • Garder O. I., Dolina I. S., Pelinovsky E. N., Poplavsky A. A., Fridman V. E. (1993): Tsunami wave generation by gravitational lithodynamic processes. Tusnami studies (in Russian), (5) 50–60

    Google Scholar 

  • Gisler G. R. (2008): Tsunami simulations. Annu. Rev. Fluid Mech. 40 71–90

    Article  Google Scholar 

  • Grilli S. T., Ioualalen J. M., Kirby J. T., Watts P., Asavant J. and Shi F. (2007): Source Constraints and Model Simulation of the December 26, 2004, Indian Ocean Tsunami. Journal of Ocean Engineering. 133(6) 414–428

    Google Scholar 

  • Handbook for Tsunami Forecast in the Japan Sea. (2001): Earthquake and Tsunami Observation Division, Seismological and Volcanological Department, Japan Meteorological Agency, 22

    Google Scholar 

  • Hammack J. L. (1973): A note on tsunamis: their generation and propagation in an ocean of uniform depth. J. Fluid Mech. 60 769–799

    Article  Google Scholar 

  • Hammack J. L. (1980): Baroclinic tsunami generation. J. Phys. Oceanogr. 10(9) 1455–1467

    Article  Google Scholar 

  • Horrillo J., Kowalik Z., Shigihara Y. (2006): Wave dispersion study in the Indian Ocean tsunami of December 26, 2004. Science of Tsunami Hazards 25(1) 42–63

    Google Scholar 

  • Ji, C., D. J. Wald, D. V. Helmberger (2002): Source description of the 1999 Hector Mine, California earthquake; Part I: Wavelet domain inversion theory and resolution analysis, Bull. Seismol. Soc. Am. 92(4) 1192–1207

    Article  Google Scholar 

  • Kajiura K. (1963): The leading wave of tsunami. Bull. Earthquake. Res. Inst. Tokyo Univ. 41(3) 535–571

    Google Scholar 

  • Kajiura K. (1970): Tsunami source, energy and directivity of wave radiation. Bull. Earthquake Res. Inst. Tokyo Univ. 48(5) 835–869

    Google Scholar 

  • Kanamori H. (1972): Mechanism of tsunami earthquakes. Phys. Earth Planet Int. 6 346–359

    Article  Google Scholar 

  • Kanamori, H., Anderson D. L. (1975): Theoretical basis of some empirical relations in seismology. Bull. Seismol. Soc. Am. 65 1073–1095 (1975)

    Google Scholar 

  • Kanamori H., Brodsky E. E. (2004): The physics of earthquakes. Rep. Prog. Phys. 67 1429–1496

    Article  Google Scholar 

  • Kato K., Tsuji Y. (1995): Tsunami of the Sumba Earthquake of August 19, 1977. J. Nat. Disaster Sci. 17(2) 87–100

    Google Scholar 

  • Kostitsyna O. V., Nosov M. A., Shelkovnikov N. K. (1992): A study of nonlinearity in the process of tsunami generation by sea floor motion. Moscow Univ. Phys. Bull. 47(4) 83–86

    Google Scholar 

  • Kowalik Z., Murty T. S. (1987): Influence of the size, shape and orientation of the earthquake source area in the Shumagin seismic gap on the resulting tsunami. Notes and Correspondens, (7) 1057–1062

    Google Scholar 

  • Kowalik Z., Knight W., Logan T., Whitmore P. (2005): Numerical modelling of the global tsunami: Indonesian tsunami of 26 December 2004. Sci. Tsunami Hazard 23(1) 40–56

    Google Scholar 

  • Kulikov E. A., Rabinovich A. B., Fain I. V., Bornhold B. D., Thomson R. E. (1998): Tsunami generation by landslides at the Pacific coast of North America and the role of tides. Oceanology 38(3) 323–328

    Google Scholar 

  • Landau L. D., Lifshitz E. M. (1987): Fluid Mechanics, V.6 of Course of Theoretical Physics, 2nd English edition. Revised. Pergamon Press, Oxford-New York-Beijing-Frankfurt-San Paulo- Sydney-Tokyo-Toronto

    Google Scholar 

  • Lebedev A. N., Sebekin B. I. (1982): Generation of a Directed Tsunami Wave in a Coastal Zone. Izvestia Akademii nauk SSSR. Fizika atmosfery i okeana 18(4) 399–407

    Google Scholar 

  • Levin B. W. (1978): Review of works on experimental modelling of the tsunami excitation process (in Russian). In: Methods for calculating tsunami rise and propagation. Nauka, Moscow, pp. 125–139

    Google Scholar 

  • Levin B. W., Nosov M. A. (2008): On the possibility of tsunami formation as a result of water discharge into seismic bottom fractures. Izvestiya, Atmos. Oceanic Phys. 44(1) 117–120

    Google Scholar 

  • Levin B. W., Soloviev S. L. (1985): Variations of the field of mass velocities in the pleistoseist zone of an underwater earthquake (in Russian). DAN SSSR 285(4) 849–852

    Google Scholar 

  • Lobkovsky L. I., Baranov B. V. (1982): On tsunami excitation in subduction zones of lithospheric plates (in Russian). In: Processes of tsunami excitation and propagation. Publishing Department, RAS, pp. 7–17

    Google Scholar 

  • Marchuk An. G., Chubarov L. B., Shokin Yu. I. (1983): Numerical simulation of tsunami waves (in Russian). Nauka, Siberian Branch, Novosibirsk

    Google Scholar 

  • Marchuk An. G., Titov V. V. (1993): Influence of the source shape on tsunami wave formation (in Russian). Tsunami Res. (5) 7–21

    Google Scholar 

  • Mirchina N. P., Pelinovsky E. N. (1987): Dispersive amplification of tsunami waves (in Russian). Oceanology 27(1) 35–40

    Google Scholar 

  • Miyoshi, H. (1954): Generation of the tsunami in compressible water (Part I), J. Oceanogr. Soc. Jpn. 10(1–9)

    Google Scholar 

  • Murty T. S. (1977): Seismic sea waves — tsunamis. Bull. Fish. Res. Board Canada 198, Ottawa

    Google Scholar 

  • Myers, E. P., Baptista A. M. (1995): Finite Element Modeling of the July 12, 1993 Hokkaido Nansei—Oki Tsunami, Pure Appl. Geophys. 144(3/4) 769–802

    Article  Google Scholar 

  • Nikiforov A. f., Uvarov V. B. (1984): Special Functions of Mathematical Physics (in Russian). Nauka, Moscow

    Google Scholar 

  • Nosov M. A.( 1996): A comparative study of tsunami excited by piston-type and traveling-wave bottom motion. Volcanol. Seismol. (17) 693–698

    Google Scholar 

  • Nosov M. A. (1999): Tsunami generation in compressible ocean. Phys. Chem. Earth (B) 24(5) 437–441

    Google Scholar 

  • Nosov M. A. (1992): Generation of tsunami by oscillations of a sea floor section. Moscow Univ. Phys. Bull. 47(1) 110–112

    Google Scholar 

  • Nosov M. A. (1998): On the directivity of dispersive tsunami waves excited by piston-type and traveling-wave sea-floor motion. Volcanol. Seismol. 19 837–844

    Google Scholar 

  • Nosov M. A., Shelkovnikov N. K. (1991): Method for measuring submillimeter waves on water surface. Moscow Univ. Phys. Bull. 46(3) 106–108

    Google Scholar 

  • Nosov M. A., Shelkovnikov N. K. (1992): Generation of surface waves in a fluid layer by periodic motions of the bottom. Izvestiya, Atmos. Ocean. Phys. 28(10–11) 833–834

    Google Scholar 

  • Nosov M. A., Shelkovnikov N. K. (1995): Tsunami generation by traveling sea-floor shoves. Moscow Univ. Phys. Bull. 50(4) 88–92

    Google Scholar 

  • Nosov M. A., Shelkovnikov N. K. (1997): The excitation of dispersive tsunami waves by piston and membrane floor motions. Izvestiya, Atmos. Ocean. Phys. 33(1) 133–139

    Google Scholar 

  • Nosov M. A., Mironyuk S. V., Shelkovnikov N. K. (1999): Bottom displacements of alternating signs and leading tsunami wave (in Russian). In: Collection ‘Interaction in the lithosphere— hydrosphere—atmosphere system’, 2. Publishing Dept. of MSU Phys. Faculty, Moscow, pp. 193–200

    Google Scholar 

  • Novikova L. E., Ostrovsky L. A. (1979): Excitation of tsunami waves by traveling displacement of the ocean bottom. Marine Geodesy 2(4) 365–380

    Article  Google Scholar 

  • Ohmachi T., Tsukiyama H., Matsumoto H. (2001): Simulation of tsunami induced by dynamic displacement of seabed due to seismic faulting. Bull. Seismol. Soc. Am. 91(6) 1898–1909

    Article  Google Scholar 

  • Okada (1985): Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 75(4) 1135–1154

    Google Scholar 

  • Okal E. A., Synolakis C. E. (2004): Source discriminants for near-field tsunamis. Geophys. J. Int. 158 899–912

    Article  Google Scholar 

  • Pelinovsky E. N. (1996): Hydrodynamics of tsunami waves (in Russian). Institute of Applied Physics, RAS, Nizhnii Novgorod

    Google Scholar 

  • Pelinovsky E., Talipova T., Kurkin A., Kharif C. (2001): Nonlinear mechanism of tsunami wave generation by atmospheric disturbances. Nat. Hazard. Earth Syst. Sci. 1 243–250

    Article  Google Scholar 

  • Rivera P. C. (2006): Modeling the Asian tsunami evolution and propagation with a new generation mechanism and a non-linear dispersive wave model. Sci. Tsunami Hazard. 25(1) 18–33

    Google Scholar 

  • Satake K. (1995): Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami. PAGEOPH 144(3/4) 455–470

    Article  Google Scholar 

  • Satake K., Imamura F. (1995): Tsunamis: seismological and disaster prevention studies. J. Phys. Earth 43(3) 259–277

    Google Scholar 

  • Satake K., Wang K., Atwater B. F. (2003): Fault slip and seismic moment of the 1700 Casca-dia earthquake inferred from Japanese tsunami descriptions. J. Geophys. Res. 108(B11) 2535,doi:10.1029/2003JB002521

    Article  Google Scholar 

  • Sretensky L. N. (1977): Theory of wave motions of liquids (in Russian). Nauka, Moscow

    Google Scholar 

  • Suleimani E., Hansen R., Kowalik Z. (2003): Inundation modeling of the 1964 tsunami in Kodiak Island, Alaska. In: Submarine Landslides and Tsunamis (edited by Yalciner A. C., Pelinovsky E. N., Okal E. Synolakis C. E.) 21 191–201. Kluwer, Dordrecht

    Google Scholar 

  • Sveshnikov A. G., Tikhonov A. N. (1999): Theory of functions of a complex variable (in Russian). Nauka, Fizmatlit, Moscow

    Google Scholar 

  • Takahasi R. (1934): A model experiment on the mechanism of seismic sea wave generation. Part 1. Bull. Earthquake Res. Inst. (12) 152–178

    Google Scholar 

  • Takahasi R. (1963): On some model experiment on tsunami generation. In: Intern. Union Geodesy and Geophys. Monogr. 24 235–248

    Google Scholar 

  • Tanioka Y., Satake K. (1996): Fault Parameters of the 1896 Sanriku Tsunami Earthquake Estimated from Tsunami Numerical Modeling. Geophys. Res. Lett. 23(13) 1549–1552

    Article  Google Scholar 

  • Titov V. V., Mofjeld H. O., Gonzalez F. I., Newman J. C. (1999): Offshore forecasting of Alaska-Aleutian subduction zone tsunamis in Hawaii. NOAA Technical Memorandum ERL PMEL-114

    Google Scholar 

  • Titov V. V., Gonzalez F. I., Bernard E.N., et al. (2005): In: Real-Time Tsunami Forecasting: Challenges and Solutions. Nat. Hazard. 35(1), Special Issue, pp. 41–58. U.S. National Tsunami Hazard Mitigation Program

    Google Scholar 

  • Van Dorn W. G. (1964): Source mechanism of the tsunami of March 28, 1964, in Alaska. In: Proc. 9th Conf. Coastal Eng., Lisbon, pp. 166–190

    Google Scholar 

  • Vasilieva G. V. (1981): On wave excitation in shallow water. In: Tsunami wave propagation and runup on shore (in Russian), pp. 67–69. Nauka, Moscow

    Google Scholar 

  • Voight S. S. (1987): Tsunami waves. Tsunami researches (in Russian). (2) 8–26

    Google Scholar 

  • Voight S. S., Lebedev A. N., Sebekin B. I. (1980): Certain tsunami wave peculiarities, related to characteristics of the perturbation source. In: Tsunami theory and effective prognosis (in Russian), pp. 5–11. Nauka, Moscow

    Google Scholar 

  • Voit S. S., Lebedev A. N., Sebekin B. I. (1981): Formation of a Directed Tsunami Wave at an Excitation Focus. Izvestia Akademii nauk SSSR. Fizika atmosfery i okeana 17(3) 296–304

    Google Scholar 

  • Voight S. S., Lebedev A. N., Sebekin B. I. (1982): On the generation of a directed tsunami wave by a horizontal bottom displacement In: Processes of tsunami excitation and propagation (in Russian), pp. 18–23. IO RAN, Moscow

    Google Scholar 

  • Watts P., Grilli S. T., Imamura F. (2001): Coupling of tsunami generation and propagation codes. In: ITS Proceedings, Session 7, Numbers 7–13, pp. 811–823

    Google Scholar 

  • Yagi Y. (2004): Source rupture process of the 2003 Tokachi–oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data. Earth Planets Space 56 311–316

    Google Scholar 

  • Zaitsev A. I., Kurkin A. A., Levin B. W., et al. (2005): Numerical simulation of catastrophic tsunami propagation in the Indian Ocean (December 26, 2004). Doklady Earth Sci. 402(4) 614–618

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

(2009). Physical Processes at the Source of a Tsunami of Seismotectonic Origin. In: Physics of Tsunamis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8856-8_2

Download citation

Publish with us

Policies and ethics