Skip to main content

Foreign Gene Expression in Photosynthetic Bacteria

  • Chapter
The Purple Phototrophic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 28))

Summary

Large-scale production of membrane proteins in functional form is an arduous task. The overexpression of membrane proteins is fraught with unique challenges, and systems presently in use often fail to generate products which are compatible with subsequent solubilization, stabilization, and purification steps. To address these requirements, it is possible to exploit the unique physiology of the Rhodobacter species of photosynthetic bacteria, which produces extremely large quantities of internal membranes (invaginations of the cytoplasmic membrane) under certain growth conditions in response to changes in light intensity and/or oxygen tension. Towards this end, an expression system has been designed that coordinates synthesis of foreign membrane proteins with synthesis of new membrane into which they can be incorporated. These intracytoplasmic membrane (ICM) vesicles sequestering the newly synthesized foreign proteins are readily isolated by differential centrifugation following cell lysis. A diverse set of foreign membrane proteins — spanning a range of isoelectric points, molecular weights and predicted membrane topologies and representing several prokaryotic and eukaryotic species — has been expressed heterologously in Rhodobacter. Many target membrane proteins can be produced and purified in a semi-automated fashion at levels greater than 10 mg per liter of culture.

This expression system is versatile, offering many strategies to achieve success in expression of membrane proteins. However, it is not necessarily restricted to the production of membrane proteins. For instance, Rhodobacter possesses advantages for the expression of soluble proteins that require an abundance of membrane surface (e.g., proteins only peripherally- or transiently-associated with the membrane) or proteins requiring complex redox cofactors which are native to Rhodobacter. In addition, Rhodobacter ICMs are easily isolated and are naturally enriched in target membrane proteins; thus, these membranes also facilitate biochemical studies, making this expression system valuable for a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

DMSO:

dimethyl sulfoxide

E. :

Escherichia

FPLC:

fast protein liquid chromatography

GFP:

green fluorescent protein

HT:

polyhistidine tag

ICM:

intracytoplasmic membrane

IMAC:

immobilized metal affinity chromatography

IPTG:

isopropyl-β-D-thiogalactoside

LH1:

core light-harvesting antenna complex

LH2:

peripheral light-harvesting antenna complex

ORF:

open reading frame

PCR:

polymerase chain reaction

Rba. :

Rhodobacter

RC:

reaction center

SDS:

sodium dodecyl sulfate

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SeMet:

selenomethionine

Tc:

tetracycline

References

  • Aagaard J and Sistrom WR (1972) Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria. Photochem Photobiol 15: 209–225

    PubMed  CAS  Google Scholar 

  • Aklujkar M, Prince RC and Beatty JT (2006) The photosynthetic deficiency due to puhC gene deletion in Rhodobacter capsulatus suggests a PuhC protein-dependent process of RC/LH1/PufX complex reorganization. Arch Biochem Biophys 454: 59–71

    PubMed  CAS  Google Scholar 

  • Arechaga I, Miroux B, Karrasch S, Huijbregts R, de Kruijff B, Runswick MJ and Walker JE (2000) Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F1F0 ATP synthase. FEBS Lett 482: 215–219

    PubMed  CAS  Google Scholar 

  • Bahatyrova S, Frese RN, Siebert CA, Olsen JD, Van Der Werf KO, Van Grondelle R, Niederman RA, Bullough PA, Otto C and Hunter CN (2004) The native architecture of a photosynthetic membrane. Nature 430: 1058–1062

    PubMed  CAS  Google Scholar 

  • Benning C (1998) Membrane lipids in anoxygenic photosynthetic bacteria. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function, and Genetics (Advances in Photosynthesis and Respiration, Vol 6), pp 83–101. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Busso D, Kim R and Kim SH (2003) Expression of soluble recombinant proteins in a cell-free system using a 96-well format. J Biochem Biophys Methods 55: 233–240

    PubMed  CAS  Google Scholar 

  • Busso D, Kim R and Kim SH (2004) Using an Escherichia coli cell-free extract to screen for soluble expression of recombinant proteins. J Struct Funct Genomics 5: 69–74

    PubMed  CAS  Google Scholar 

  • Chistoserdov AY, Chistoserdova LV, McIntire WS and Lidstrom ME (1994) Genetic organization of the mau gene cluster in Methylobacterium extorquens AM1: Complete nucleotide sequence and generation and characteristics of mau mutants. J Bacteriol 176: 4052–4065

    PubMed  CAS  Google Scholar 

  • Chory J and Kaplan S (1982) The in vitro transcription-translation of DNA and RNA templates by extracts of Rhodopseudomonas sphaeroides. Optimization and comparison of template specificity with Escherichia coli extracts and in vivo synthesis. J Biol Chem 257: 15110–15121

    PubMed  CAS  Google Scholar 

  • Chory J, Muller ED and Kaplan S (1985) DNA-directed in vitro synthesis and assembly of the form II D-ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodopseudomonas sphaeroides. J Bacteriol 161: 307–313

    PubMed  CAS  Google Scholar 

  • Clayton RK (1980) Photosynthesis: Physical Mechanisms and Chemical Patterns. Cambridge University Press, Cambridge

    Google Scholar 

  • Collins MLP and Cheng Y (2004) Host/vector system for expression of membrane proteins. Office UP.USANo. 6,680,179

    Google Scholar 

  • Columbus L, Lipfert J, Klock H, Millett I, Doniach S and Lesley SA (2006) Expression, purification, and characterization of Thermotoga maritima membrane proteins for structure determination. Protein Sci 15: 961–975

    PubMed  CAS  Google Scholar 

  • Davis J, Donohue TJ and Kaplan S (1988) Construction, characterization, and complementation of a Puf- mutant of Rhodobacter sphaeroides. Journal of Bacteriology 170: 320–329

    PubMed  CAS  Google Scholar 

  • De Smet L, Kostanjevecki V, Guisez Y and Van Beeumen J (2001)A novel system for heterologous expression of flavocytochrome c in phototrophic bacteria using the Allochromatium vinosum rbcA promoter. Arch Microbiol 176: 19–28

    PubMed  Google Scholar 

  • Dieckman L, Gu M, Stols L, Donnelly MI and Collart FR (2002) High throughput methods for gene cloning and expression. Protein Expr Purif 25: 1–7

    PubMed  CAS  Google Scholar 

  • Ditta G, Schmidhauser T, Yakobsen E, Lu P, Liang X-W, Finlay DR, Guiney D and Helinski DR (1985) Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13: 149–153

    PubMed  CAS  Google Scholar 

  • Donohue TJ and Kaplan S (1991) Genetic techniques in Rhodospirillaceae. In: Methods in Enzymology, pp 459–485. Academic Press, New York

    Google Scholar 

  • Drepper T, Arvani S, Rosenau F, Wilhelm S and Jaeger KE (2005) High-level transcription of large gene regions: A novel T(7) RNA-polymerase-based system for expression of functional hydrogenases in the phototrophic bacterium Rhodobarter capsulatus. Biochem Soc Trans 33: 56–58

    PubMed  CAS  Google Scholar 

  • Drews G (1985) Structure and functional organization of light-harvesting complexes and photochemical reaction centers in membranes of phototrophic bacteria. Microbiol Rev 49: 59–70

    PubMed  CAS  Google Scholar 

  • Drews G (1992) Intracytoplasmic membranes in bacterial cells: organization, function, and biosynthesis. In: Mohan S, Dow C and Cole JA (eds) Prokaryotic Structure and Function: A New Perspective, pp 249–274. Cambridge University Press, Cambridge

    Google Scholar 

  • Drews G and Golecki JR (1995) Structure, molecular organization, and biosynthesis of membranes of purple bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 231–257. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Elsen S, Swem LR, Swem DL and Bauer CE (2004) RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol Mol Biol Rev 68: 263–279

    PubMed  CAS  Google Scholar 

  • Endo Y and Sawasaki T (2006) Cell-free expression systems for eukaryotic protein production. Curr Opin Biotechnol 17: 373–380

    PubMed  CAS  Google Scholar 

  • Farchaus JW and Oesterhelt D (1989) A Rhodobacter sphaeroides puf L, M and X deletion mutant and its complementation in trans with a 5.3 kb puf operon shuttle fragment. EMBO Journal 8: 47–54

    PubMed  CAS  Google Scholar 

  • Fornari CS and Kaplan S (1982) Genetic transformation of Rhodopseudomonas sphaeroides by plasmid DNA. J Bacteriol 152: 89–97

    PubMed  CAS  Google Scholar 

  • Fowler GJ and Hunter CN (1996) The synthesis and assembly of functional high and low light LH2 antenna complexes from Rhodopseudomonas palustris in Rhodobacter sphaeroides. J Biol Chem 271: 13356–13361

    PubMed  CAS  Google Scholar 

  • Fowler GJ, Gardiner AT, Mackenzie RC, Barratt SJ, Simmons AE, Westerhuis WH, Cogdell RJ and Hunter CN (1995) Heterologous expression of genes encoding bacterial light-harvesting complexes in Rhodobacter sphaeroides. J Biol Chem 270: 23875–23882

    PubMed  CAS  Google Scholar 

  • Fulcher TK, Beatty JT and Jones MR (1998) Demonstration of the key role played by the PufX protein in the functional and structural organization of native and hybrid bacterial photosynthetic core complexes. J Bacteriol 180: 642–646

    PubMed  CAS  Google Scholar 

  • Gaertig J, Gao Y, Tishgarten T, Clark TG and Dickerson HW (1999) Surface display of a parasite antigen in the ciliate Tetrahymena thermophila. Nat Biotechnol 17: 462–465

    PubMed  CAS  Google Scholar 

  • Garcia AF, Meryandini A, Brand M, Tadros MH and Drews G (1994) Phosphorylation of the alpha-polypeptides and beta-polypeptides of the light-harvesting complex I (B870) of Rhodobacter capsulatus in an in vitro translation system. FEMS Microbiol Lett 124: 87–91

    CAS  Google Scholar 

  • Garcia-Asua G, Cogdell RJ and Hunter CN (2002) Functional assembly of the foreign carotenoid lycopene into the photosynthetic apparatus of Rhodobacter sphaeroides, achieved by replacement of the native 3-step phytoene desaturase with its 4-step counterpart from Erwinia herbicola. Mol Microbiol 44: 233–244

    PubMed  CAS  Google Scholar 

  • Gerhardt P, Murray RGE, Wood W and Krieg NR (1994) Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Golecki JR and Heinrich UR (1991) Ultrastructural and electron spectroscopic analyses of cyanobacteria and bacteria. J Microsc 162: 147–154

    PubMed  CAS  Google Scholar 

  • Golecki JR, Ventura S and Oelze J (1991) The architecture of unusual membrane tubes in the B800–B850 light-harvesting bacteriochlorophyll-deficient mutant 19 of Rhodobacter sphaeroides. FEMS Microbiol Lett 77: 335–340

    CAS  Google Scholar 

  • Graichen ME, Jones LH, Sharma BV, van Spanning RJ, Hosier JP and Davidson VI, (1999) Heterologous expression of correctly assembled methylamine dehydrogenase in Rhodobacter sphaeroides. J Bacteriol 181: 4216–4222

    PubMed  CAS  Google Scholar 

  • Gumpert J and Hoischen C (1998) Use of cell wall-less bacteria (L-forms) for efficient expression and secretion of heterologous gene products. Curr Opin Biotechnol 9: 506–509

    PubMed  CAS  Google Scholar 

  • Heide R, Wiesler B, Wachter E, Neubuser A, Hoffschulte HK, Hengelage T, Schimz KL, Stuart RA and Muller M (1997) Comparative characterization of SecA from the alpha-subclass purple bacterium Rhodobacter capsulatus and Escherichia coli reveals differences in membrane and precursor specificity. J Bacteriol 179: 4003–4012

    Google Scholar 

  • Hoger JH, Chory J and Kaplan S (1986) In vitro biosynthesis and membrane association of photosynthetic reaction center subunits from Rhodopseudomonas sphaeroides. J Bacteriol 165: 942–950

    PubMed  CAS  Google Scholar 

  • Hoischen C, Fritsche C, Gumpert J, Westermann M, Gura K and Fahnert B (2002) Novel bacterial membrane surface display system using cell wall-less L-forms of Proteus mirabilis and Escherichia coli. Appl Environ Microbiol 68: 525–531

    PubMed  CAS  Google Scholar 

  • Hunter CN, Pennoyer JD, Sturgis JN, Farrelly D and Niederman RA (1988) Oligomerization states and associations of light-harvesting pigment protein complexes of Rhodobacter sphaeroides as analyzed by lithium dodecylsulfate polyacrylamide-gel electrophoresis. Biochemistry 27: 3459–3467

    CAS  Google Scholar 

  • Hunter CN, Hundle BS, Hearst JE, Lang HP, Gardiner AT, Takaichi S and Cogdell RJ (1994) Introduction of new carotenoids into the bacterial photosynthetic apparatus by combining the carotenoid biosynthetic pathways of Erwinia herbicola and Rhodobacter sphaeroides. J Bacteriol 176: 3692–3697

    PubMed  CAS  Google Scholar 

  • Imhoff JF (1995) Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 1–15. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Jamieson SJ, Wang P, Qian P, Kirkland JY, Conroy MJ, Hunter CN and Bullough PA (2002) Projection structure of the photosynthetic reaction centre-antenna complex of Rhodospirillum rubrum at 8.5 Å resolution. EMBO J 21: 3927–3935

    PubMed  CAS  Google Scholar 

  • Johnson JA, Wong WK and Beatty JT (1986) Expression of cellulase genes in Rhodobacter capsulatus by use of plasmid expression vectors. J Bacteriol 167: 604–610

    PubMed  CAS  Google Scholar 

  • Kappler U and McEwan AG (2002) A system for the heterologous expression of complex redox proteins in Rhodobacter capsulatus: characterisation of recombinant sulphitexytochrome c oxidoreductase from Starkeya novella. FEBS Lett 529: 208–214

    PubMed  CAS  Google Scholar 

  • Karrasch S, Bullough PA and Ghosh R (1995) The 8.5 angstrom projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO Journal 14: 631–638

    PubMed  CAS  Google Scholar 

  • Katsiou E, Sturgis JN, Robert B and Tadros MH (1998) Heterologous expression of genes encoding bacterial light-harvesting complex II in Rhodobacter capsulatus and Rhodovulum sulfidophilum. Microbiological Research 153: 189–204

    PubMed  CAS  Google Scholar 

  • Kaufmann N, Horst-Helwig R, Golecki JR, Garcia AF and Drews G (1982) Differentiation of the membrane system in cells of Rhodopseudomonas capsulata after transition from chemotrophic to phototrophic growth conditions. Archives of Microbiology 131: 313–322

    CAS  Google Scholar 

  • Kiefer H, Maier K and Vogel R (1999) Refolding of G-protein-coupled receptors from inclusion bodies produced in Escherichia coli. Biochemical Society Transactions 27: 908–912

    PubMed  CAS  Google Scholar 

  • Kiley PJ and Kaplan S (1988) Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. Microbiological Reviews 52: 50–69

    PubMed  CAS  Google Scholar 

  • Kiley PJ, Varga A and Kaplan S (1988) Physiological and structural analysis of light-harvesting mutants of Rhodobacter sphaeroides. J Bacteriol 170: 1103–1115

    PubMed  CAS  Google Scholar 

  • Kirmaier C, Laible PD, Hindin E, Hanson DK and Holten D (2003) Detergent effects on primary charge separation in wild-type and mutant Rhodobacter capsulatus reaction centers. Chem Phys 294: 305–318

    CAS  Google Scholar 

  • Klammt C, Lohr F, Schafer B, Haase W, Dotsch V, Ruterjans H, Glaubitz C and Bernhard F (2004) High level cell-free expression and specific labeling of integral membrane proteins. Eur J Biochem 271: 568–580

    PubMed  CAS  Google Scholar 

  • Klug G (1995) Post-transcriptional control of photosynthesis gene expression. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration,Vol2), pp 1235–1244. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Koepke J, Hu X, Muenke C, Schulten K and Michel H (1996) The crystal structure of the light-harvesting complex II (B800–850) from Rhodospirillum molischianum. Structure 4: 581–597

    PubMed  CAS  Google Scholar 

  • Korepanova A, Gao FP, Hua Y, Qin H, Nakamoto RK and Cross TA (2005) Cloning and expression of multiple integral membrane proteins from Mycobacterium tuberculosis in Escherichia coli. Protein Sci 14: 148–158

    PubMed  CAS  Google Scholar 

  • Kovach ME, Phillips RW, Elzer PH, Roop RM and Peterson KM (1994) pBBR1MCS: Broad host range cloning vector. Biotechniques 16: 800–802

    PubMed  CAS  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop II RM and Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166: 175–176

    PubMed  CAS  Google Scholar 

  • Kuruma Y, Nishiyama K, Shimizu Y, Muller M and Ueda T (2005) Development of a minimal cell-free translation system for the synthesis of presecretory and integral membrane proteins. Biotechnol Prog 21: 1243–1251

    PubMed  CAS  Google Scholar 

  • Laible PD, Scott HN, Henry L and Hanson DK (2004) Towards higher-throughput membrane protein production for structure genomics initiatives. J Struct Func Genom 5: 167–172

    CAS  Google Scholar 

  • Laible PD, Hata AN, Crawford AE and Hanson DK (2005a) Incorporation of selenomethionine into induced intracytoplasmic membrane proteins of Rhodobacter species. J Struct Func Genom 6: 95–102

    CAS  Google Scholar 

  • Laible PD, Mielke DL and Hanson DK (2005b) Membrane protein production: A bacterial ‘factory’ in Rhodobacter. Screening 6: 30–32

    Google Scholar 

  • Lebedev N and Timko MP (2002) POR structural domains important for the enzyme activity in R. capsulatus complementation system. Photosynth Res 74: 153–163

    PubMed  CAS  Google Scholar 

  • Lee JK, Kiley PJ and Kaplan S (1989) Post-transcriptional control of puc operon expression of B800–850 light-harvesting complex formation in Rhodobacter sphaeroides. J. Bacteriol. 171: 3391–3405

    PubMed  CAS  Google Scholar 

  • MacGregor BJ and Donohue TJ (1991) Evidence for two promoters for the cytochrome c 2 gene (cycA) of Rhodobacter sphaeroides. J Bacteriol 173: 3949–3957

    PubMed  CAS  Google Scholar 

  • Martin JP, Jr., Colina K and Logsdon N (1987) Role of oxygen radicals in the phototoxicity of tetracyclines toward Escherichia coli B. J Bacteriol 169: 2516–2522

    PubMed  CAS  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    CAS  Google Scholar 

  • Miroux B and Walker JE (1996) Over-production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Molec Biol 260: 289–298

    PubMed  CAS  Google Scholar 

  • Myllykallio H, Jenney FE, Jr., Moomaw CR, Slaughter CA and Daldal F (1997) Cytochrome c y of Rhodobacter capsulatus is attached to the cytoplasmic membrane by an uncleaved signal sequence-like anchor. J Bacteriol 179: 2623–2631

    PubMed  CAS  Google Scholar 

  • Naylor G, Addlesee H, Gibson L and Hunter CN (1999) The photosynthesis gene cluster of Rhodobacter sphaeroides. Photosynth Res 62: 121–139

    CAS  Google Scholar 

  • Nguyen HH, Elliott SJ, Yip JH and Chan SI (1998) The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme. Isolation and characterization. J Biol Chem 273: 7957–7966

    PubMed  CAS  Google Scholar 

  • Niederman RA, Mallon DE and Langan JJ (1976) Membranes of Rhodopseudomonas sphaeroides. IV Assembly of chromatophores in low-aeration cell suspensions. Biochim Biophys Acta 440: 429–447

    PubMed  Google Scholar 

  • Niederman RA, Mallon DE and Parks LC (1979) Membranes of Rhodopseudomonas sphaeroides VI. Isolation of a fraction enriched in newly synthesized bacteriochlorophyll a-protein complexes. Biochim Biophys Acta 555: 210–220

    PubMed  CAS  Google Scholar 

  • Parks LC and Niederman RA (1978) Membranes of Rhodopseudomonas sphaeroides. V. Identification of bacteriochlorophyll alpha-depleted cytoplasmic membrane in phototrophically grown cells. Biochim Biophys Acta 511: 70–82

    PubMed  CAS  Google Scholar 

  • Pelham HR and Jackson RJ (1976) An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem 67: 247–256

    PubMed  CAS  Google Scholar 

  • Pokkuluri PR, Laible PD, Deng YL, Wong TN, Hanson DK and Schiffer M (2002) The structure of amutant photosynthetic reaction center shows unexpected changes in main chain orientations and quinone position. Biochemistry 41: 5998–6007

    PubMed  CAS  Google Scholar 

  • Qian P, Addlesee HA, Ruban AV, Wang P, Bullough PA and Hunter CN (2003) A reaction center-light-harvesting 1 complex (RCLH1) froma Rhodospirillum rubrum mutant with altered esterifying pigments: Characterization by optical spectroscopy and cryo-electron microscopy. J Biol Chem 278: 23678–23685

    PubMed  CAS  Google Scholar 

  • Qian P, Hunter CN and Bullough PA (2005) The 8.5 Å projection structure of the core RC-LH1-PufX dimer of Rhodobacter sphaeroides. J Mol Biol 349: 948–960

    PubMed  CAS  Google Scholar 

  • Raman P, Cherezov V and Caffrey M (2006) The membrane protein data bank. Cell Mol Life Sci 63: 36–51

    PubMed  CAS  Google Scholar 

  • Research Collaboratory for Structural Bioinformatics (2008) RCSB Protein Data Bank. http://www.rcsb.org/pdb, February 5, 2008

  • Roh JH, Smith WE and Kaplan S (2004) Effects of oxygen and light intensity on the transcriptome expression in Rhodobacter sphaeroides 2.4.1. J Biol Chem 279: 9146–9155

    PubMed  CAS  Google Scholar 

  • Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW and Cogdell RJ (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302: 1969–1972

    PubMed  CAS  Google Scholar 

  • Schimz KL, Decker G, Frings E, Meens J, Klein M and Muller M (1995) A cell-free protein translocation system prepared entirely from a gram-positive organism. FEBS Lett 362: 29–33

    PubMed  CAS  Google Scholar 

  • Scott HN, Laible PD and Hanson DK (2003) Sequences of versatile broad-host-range vectors of the RK2 family. Plasmid 50: 74–79

    PubMed  CAS  Google Scholar 

  • Siebert CA, Qian P, Fotiadis D, Engel A, Hunter CN and Bullough PA (2004) Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides: The role of PufX. EMBO J 23: 690–700

    PubMed  CAS  Google Scholar 

  • Simon R, Priefer U and Puhler A (1983) A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria. Bio/Technology 1: 37–45

    Google Scholar 

  • Spirin AS (2004) High-throughput cell-free systems for synthesis of functionally active proteins. Trends Biotechnol 22: 538–545

    PubMed  CAS  Google Scholar 

  • Taguchi AKW, Stocker JW, Alden RG, Causgrove TP, Peloquin JM, Boxer SG and Woodbury NW (1992) Biochemical characterization and electron-transfer reactions of sym1, a Rhodobacter capsulatus symmetry mutant which affects the initial electron donor. Biochemistry 31: 10345–10355

    PubMed  CAS  Google Scholar 

  • Takemoto J and Bachmann RC (1979) Orientation of chromatophores and spheroplast-derived membrane vesicles of Rhodopseudomonas sphaeroides: analysis by localization of enzyme activities. Arch Biochem Biophys 195: 526–534

    PubMed  CAS  Google Scholar 

  • Troschel D and Muller M (1990) Development of a cell-free system to study the membrane assembly of photosynthetic proteins of Rhodobacter capsulatus. J Cell Biol 111: 87–94

    PubMed  CAS  Google Scholar 

  • Troschel D, Eckhardt S, Hoffschulte HK and Muller m (1992) Cell-free synthesis and membrane integration of the reaction center subunit H from Rhodobacter capsulatus. FEMS Microbiol Lett 91: 129–133

    CAS  Google Scholar 

  • Turner GJ, Reusch R, Winter-Vann AM, Martinez L and Betlach MC (1999) Heterologous gene expression in an membrane-protein-specific system. Prot Expres Purif 17: 312–323

    CAS  Google Scholar 

  • van der Palen CJ, Reijnders WN, de Vries S, Duine JA and van Spanning RJ (1997) MauE and MauD proteins are essential in methylamine metabolism of Paracoccus denitrificans. Antonie Van Leeuwenhoek 72: 219–228

    PubMed  Google Scholar 

  • van Dijk R, Faber KN, Kiel JA, Veenhuis M and van der Klei I (2000) The methylotrophic yeast Hansenula polymorpha: A versatile cell factory. Enzyme Microb Technol 26: 793–800

    PubMed  Google Scholar 

  • van Grondelle R, Hunter CN, Bakker JGC and Kramer HJM (1983) Size and structure of antenna complexes of photosynthetic bacteria as studied by singlet-singlet quenching of the bacteriochlorophyll fluorescence yield. Biochim Biophys Acta 723: 30–36

    Google Scholar 

  • Varga AR and Kaplan S (1993) Synthesis and stability of reaction center polypeptides and implications for reaction center assembly in Rhodobacter sphaeroides. J Biol Chem 268: 19842–19850

    PubMed  CAS  Google Scholar 

  • Verméglio A, Joliot P and Joliot A (1995) Organization of electron transfer components and supercomplexes. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 279–295. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Walz T, Jamieson SJ, Bowers CM, Bullough PA and Hunter CN (1998) Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 Å, LH1 and RC-LH1 at 25 Å. J Mol Biol 282: 833–845

    PubMed  CAS  Google Scholar 

  • Wang Z (2006) Controlled expression of recombinant genes and preparation of cell-free extracts in yeast. Methods Mol Biol 313: 317–331

    PubMed  CAS  Google Scholar 

  • Wieseler B and Muller M (1993) Translocation of precytochrome c 2 into intracytoplasmic membrane vesicles of Rhodobacter capsulatus requires a peripheral membrane protein. Mol Microbiol 7: 167–176

    PubMed  CAS  Google Scholar 

  • Wilks HM and Timko MP (1995) A light-dependent complementation system for analysis of NADPH:protochlorophyllide oxidoreductase: Identification and mutagenesis of two conserved residues that are essential for enzyme activity. Proc Natl Acad Sci USA 92: 724–728

    PubMed  CAS  Google Scholar 

  • Yang F, Moss LG and Phillips GN, Jr. (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14: 1246–1251

    PubMed  CAS  Google Scholar 

  • Zilsel J, Lilburn TG and Beatty JT (1989) Formation of functional inter-species hybrid photosynthetic complexes in Rhodobacter capsulatus. FEBS Lett 253: 247–252

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip D. Laible .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Laible, P.D., Mielke, D.L., Hanson, D.K. (2009). Foreign Gene Expression in Photosynthetic Bacteria. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_42

Download citation

Publish with us

Policies and ethics