Skip to main content

Molecular biology of the Nicotiana floral nectary

  • Chapter
Nectaries and Nectar

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aloni, R., Aloni, E., Langhans, M., & Ullrich, C.I. (2005). Role of auxin in regulating Arabi-dopsis flower development. Planta, 223, 315-328.

    Article  PubMed  Google Scholar 

  • Alvarez, J., & Smyth, D.R. (1999). CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS. Development, 126, 2377-86.

    CAS  PubMed  Google Scholar 

  • Alvarez, M.E., Pennell, R.I., Meijer, P.J., Ishikawa, A., Dixon, R.A., & Lamb, C. (1998). Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell, 92, 773-784.

    Article  CAS  PubMed  Google Scholar 

  • Bargoni, N. (1972a). Anaerobic glycolysis in the nectary of Convulvulus sepium. Bollettino-Societa Italiana di Biologia Sperimentale, 48, 1157-1159.

    CAS  Google Scholar 

  • Bargoni, N. (1972b). Synthesis of sucrose in the nectary of Convolvulus sepium. Bollettino-Societa Italiana di Biologia Sperimentale, 48, 1159-1156.

    CAS  Google Scholar 

  • Baum, S.F., Eshed, Y., & Bowman, J.L. (2001). The Arabidopsis nectary is an ABC-independent floral structure. Development, 128, 4657-4667.

    CAS  PubMed  Google Scholar 

  • Beck, E., & Ziegler, P. (1989). Biosynthesis and degradation of starch in higher plants. An-nual Review of Plant Physiology and Plant Molecular Biology, 40, 95-117.

    Article  CAS  Google Scholar 

  • Bell, J., Ryder, T., Wingate, V., Bailey, J., & Lamb, C. (1986). Differential accumulation of plant defense gene transcripts in a compatible and an incompatible plant-pathogen interac-tion. Molecular and Cellular Biology, 6, 1615-1623.

    CAS  PubMed  Google Scholar 

  • Bieleski, R.L., & Redgwell, R.J. (1980). Sorbitol metabolism in nectaries from flowers of Rosaceae. Australian Journal of Plant Physiology, 7, 15-25.

    Article  CAS  Google Scholar 

  • Bosia, A., & Pescarmona, G.P. (1972). Substrate levels and regulation of glycolysis in the nectary of Convulvulus sepium. Bollettino-Societa Italiana di Biologia Sperimentale, 48, 1200-1201.

    CAS  Google Scholar 

  • Bowman, J.L., & Smyth, D.R. (1999). CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development, 126, 2387-2396.

    CAS  PubMed  Google Scholar 

  • Búrquez, A., & Corbet, S.A. (1991). Do flowers reabsorb nectar? Functional Ecology, 5, 369-379.

    Article  Google Scholar 

  • Carter, C., Graham, R., & Thornburg, R.W. (1999). Nectarin I is a novel, soluble germin-like protein expressed in the nectar of Nicotiana sp. Plant Molecular Biology, 41, 207-216.

    Article  CAS  PubMed  Google Scholar 

  • Carter, C., & Thornburg, R.W. (2000). Tobacco Nectarin I: purification and characterization as a germin-like, manganese superoxide dismutase implicated in the defense of floral re-productive tissues. Journal of Biological Chemistry, 275, 36726-36733.

    Article  CAS  PubMed  Google Scholar 

  • Carter, C., & Thornburg, R.W. (2003). The nectary-specific pattern of gene expression is regulated by multiple promoter elements in the tobacco Nectarin I promoter. Plant Mo-lecular Biology, 51, 451-457.

    Article  CAS  Google Scholar 

  • Carter, C., & Thornburg, R.W. (2004a). Is the nectar redox cycle a floral defense against mi-crobial attack? Trends in Plant Science, 9, 320-324.

    Article  CAS  Google Scholar 

  • Carter, C., & Thornburg, R.W. (2004b). Tobacco Nectarin III is a bifunctional enzyme with monodehydroascorbate reductase and carbonic anhydrase activities. Plant Molecular Biol-ogy, 54, 415-425.

    Article  CAS  Google Scholar 

  • Carter, C., & Thornburg, R.W. (2004c). Tobacco Nectarin V is a flavin-containing berberine bridge enzyme-like protein with glucose oxidase activity. Plant Physiology, 134, 460-469.

    Article  CAS  Google Scholar 

  • Carter, C.J., Shafir, S., Yehonatan, L., Palmer, R.G., & Thornburg, R.W. (2006). A novel role for proline in plant floral nectars. Naturwissenschaften, 93, 72-79.

    Article  CAS  PubMed  Google Scholar 

  • Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann, H.J., Van Mon-tagu, M., Inze, D., & Van Camp, W. (1998). Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proceedings of the National Academy of Sciences USA, 95, 5818-5823.

    Article  CAS  Google Scholar 

  • Davis, A., Pylatuik, J., Paradis, J., & Low, N. (1998). Nectar-carbohydrate production and composition vary in relation to nectary anatomy and location within individual flowers of several species of Brassicaceae. Planta, 205, 305-318.

    Article  CAS  PubMed  Google Scholar 

  • Davis, A.R. (2003). Influence of elevated CO2 and ultraviolet-B radiation levels on floral nectar production: a nectary-morphological perspective. Plant Systematics and Evolution, 238, 169-181.

    CAS  Google Scholar 

  • de Pinto, M.C., Tommasi, F., & De Gara, L. (2002). Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cells. Plant Physiology, 130, 698-708.

    Article  CAS  PubMed  Google Scholar 

  • Desikan, R., Neill, S.J., & Hancock, J.T. (2000). Hydrogen peroxide-induced gene expression in Arabidopsis thaliana. Free Radical Biology and Medicine, 28, 773-8.

    Article  CAS  PubMed  Google Scholar 

  • Erhardt, A., Rusterholz, H.P., & Stocklin, J. (2005). Elevated carbon dioxide increases nectar production in Epilobium angustifolium L. Oecologia, 146, 311-317.

    Article  PubMed  Google Scholar 

  • Eshed, Y., Baum, S.F., & Bowman, J.L. (1999). Distinct mechanisms promote polarity estab-lishment in carpels of Arabidopsis. Cell, 99, 199-209.

    Article  CAS  PubMed  Google Scholar 

  • Fordham-Skelton, A.P., Lilley, C., Urwin, P.E., & Robinson, N.J. (1997). GUS expression in Arabidopsis directed by 5′ regions of the pea metallothionein-like gene PsMTA. Plant Mo-lecular Biology, 34, 659-668.

    Article  CAS  Google Scholar 

  • Frey-Wyssling, A., Zimmermann, M., & Maurizio, A. (1954). Enzymic sugar metabolism in the nectaries of Euphorbia pulcherrima. Experientia, 10, 490-492.

    Article  CAS  PubMed  Google Scholar 

  • Gao, Z., Maurousset, L., Lemoine, R., Yoo, S.D., van Nocker, S., & Loescher, W. (2003). Cloning, expression, and characterization of sorbitol transporters from developing sour cherry fruit and leaf sink tissues. Plant Physiology, 131, 1566-1575.

    Article  CAS  PubMed  Google Scholar 

  • Garabagi, F., Duns, G., & Strommer, J. (2005). Selective recruitment of Adh genes for distinct enzymatic functions in Petunia hybrida. Plant Molecular Biology, 58, 283-294.

    Article  CAS  PubMed  Google Scholar 

  • Ge, Y.X., Angenent, G.C., Dahlhaus, E., Franken, J., Peters, J., Wullems, G.J., & Creemers-Molenaar, J. (2001). Partial silencing of the NEC1 gene results in early opening of anthers in Petunia hybrida. Molecular Genetics and Genomics, 265, 414-423.

    Article  CAS  PubMed  Google Scholar 

  • Ge, Y.X., Angenent, G.C., Wittich, P.E., Peters, J., Franken, J., Busscher, M., Zhang, L.M., Dahlhaus, E., Kater, M.M., Wullems, G.J., & Creemers-Molenaar, T. (2000). NEC1, a novel gene, highly expressed in nectary tissue of Petunia hybrida. Plant Journal, 24, 725-734.

    Article  CAS  PubMed  Google Scholar 

  • Golz, J.F., Keck, E.J., & Hudson, A. (2002) Spontaneous mutations in KNOX genes give rise to a novel floral structure in Antirrhinum. Current Biology, 12, 515-522.

    Article  CAS  PubMed  Google Scholar 

  • Green, T., & Ryan, C. (1972). Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science, 175, 776-777.

    Article  CAS  PubMed  Google Scholar 

  • Guerenstein, P.G., Yepez, E.A., van Haren, J., Williams, D.G., & Hildebrand, J.G. (2004). Floral CO2 emission may indicate food abundance to nectar-feeding moths. Naturwissen-schaften, 91, 329-333.

    Article  CAS  Google Scholar 

  • Heinrich, G. (1975), Glucose metabolism in the nectaries of two Aloe species and mechanism of prenectar secretion. Protoplasma, 85, 351-371.

    Article  CAS  Google Scholar 

  • Horner, H.T., Healy, R.A., Ren, G., Fritz, D., Seames, C., & Thornburg, R.W. (2007). Amyloplast to chromoplast conversion in developing ornamental tobacco floral nectaries provides sugar for nectar and antioxidants for protection. American Journal of Botany, 94, 12-24.

    Article  CAS  Google Scholar 

  • Jackson, D., Culianez-Macia, F., Prescott, A.G., Roberts, K., & Martin, C. (1991). Expression patterns of myb genes from Antirrhinum flowers. Plant Cell, 3, 115-125.

    Article  CAS  PubMed  Google Scholar 

  • Kahana, A., Silberstein, L., Kessler, N., Goldstein, R., & Perl-Treves, R. (1999). Expression of ACC oxidase genes differs among sex genotypes and sex phases in cucumber. Plant Molecular Biology, 41, 517-528.

    Article  CAS  PubMed  Google Scholar 

  • Kiddle, G., Pastori, G.M., Bernard, S., Pignocchi, C., Antoniw, J., Verrier, P.J., & Foyer, C.H. (2003). Effects of leaf ascorbate content on defense and photosynthesis gene expression in Arabidopsis thaliana. Antioxidants and Redox Signalling, 5, 23-32.

    Article  CAS  Google Scholar 

  • Koltunow, A.M., Truettner, J., Cox, K.H., Walroth, M., & Goldberg, R.B. (1990). Different temporal and spatial gene expression patterns occur during anther development. Plant Cell, 2, 1201-1224.

    Article  CAS  PubMed  Google Scholar 

  • Kornaga, T. (1993). Genetic and biochemical characterization of an unstable flower color phenotype in interspecific crosses of Nicotiana sp. MSc thesis, Ames, Iowa: Iowa State University.

    Google Scholar 

  • Kornaga, T., Zyzak, D.V., Kintinar, A., Baynes, J., & Thornburg, R. (1997). Genetic and biochemical characterization of a “lost” unstable flower color phenotype in interspecific crosses of Nicotiana sp. World Wide Web Journal of Biology, 2, 8.

    Google Scholar 

  • Lake, J.C., & Hughes, L. (1999). Nectar production and floral characteristics of Tropaeolum majus L. grown in ambient and elevated carbon dioxide. Annals of Botany, 84, 535-541.

    Article  Google Scholar 

  • Lecourieux, D., Mazars, C., Pauly, N., Ranjeva, R., & Pugin, A. (2002). Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell, 14, 2627-2641.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.-Y., Baum, S.F., Alvarez, J., Patel, A., Chitwood, D.H., & Bowman, J.L. (2005a). Ac-tivation of CRABS CLAW in the nectaries and carpels of Arabidopsis. Plant Cell, 17, 25-36.

    Article  CAS  Google Scholar 

  • Lee, J.-Y., Baum, S.F., Oh, S.-H., Jiang, C.-Z., Chen, J.-C., & Bowman, J.L. (2005b). Re-cruitment of CRABS CLAW to promote nectary development within the eudicot clade. Development, 132, 5021-5032.

    Article  CAS  Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R., & Lamb, C. (1994). H2O2 from the oxidative burst or-chestrates the plant hypersensitive disease resistance response. Cell, 79, 583-593.

    Article  CAS  PubMed  Google Scholar 

  • Matile, P. (1956). Über den Stoffwechsel und die Auxinabhängigkeit der Nektar-sekretion. [On the metabolism and the auxin dependence of nectar secretion]. Berichte der Schweize-rischen Botanischen Gesellschaft, 66, 237-266.

    CAS  Google Scholar 

  • Mishra, R.C., & Sharma, S.K. (1988). Growth regulators affect nectar-pollen production and insect foraging in Brassica seed crops. Current Science, 57, 1297-1299.

    CAS  Google Scholar 

  • Mysore, K.S., Tuopi, R.P., & Martin, G.B. (2001). Arabidopsis genome sequenced as a tool for functional genomics in tomato. Genome Biology, 2, 1003.1-1003.4.

    Google Scholar 

  • Naqvi, S., Harper, A., Carter, C., Ren, G., Guirgis, A., York, W.S., & Thornburg, R.W. (2005). Tobacco Nectarin IV is a specific inhibitor of fungal xylosidases secreted into the nectar of ornamental tobaco plants. Plant Physiology, 139, 1389-1400.

    Article  CAS  PubMed  Google Scholar 

  • Neill, S., Desikan, R., & Hancock, J. (2002). Hydrogen peroxide signalling. Current Opinion in Plant Biology, 5, 388-395.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, D.E., Glaunsinger, B., & Bohnert, H.J. (1997). Abundant accumulation of the cal-cium-binding molecular chaperone calreticulin in specific floral tissues of Arabidopsis thaliana. Plant Physiology, 114, 29-37.

    Article  CAS  PubMed  Google Scholar 

  • Nepi, M., Ciampolini, F., & Pacini, E. (1996a). Development and ultrastructure of Cucurbita pepo nectaries of male flowers. Annals of Botany, 78, 95-104.

    Article  Google Scholar 

  • Nepi, M., Guarnieri, M., & Pacini, E. (2001). Nectar secretion, reabsorption, and sugar com-position in male and female flowers of Cucurbita pepo. International Journal of Plant Sciences, 162, 353-358.

    Article  CAS  Google Scholar 

  • Nepi, M., Pacini, E., & Willemse, M. (1996b). Nectary biology of Cucurbita pepo: ecophysi-ological aspects. Acta Botanica Neerlandica, 45, 41-54.

    Google Scholar 

  • Nichol, P., & Hall, J.L. (1988). Characteristics of nectar secretion by the extrafloral nectaries of Ricinus communis. Journal of Experimental Botany, 39, 573-586.

    Article  CAS  Google Scholar 

  • Nicolson, S.W., & Thornburg, R. (2007). Nectar chemistry. In: S.W. Nicolson, M. Nepi, & E. Pacini (Eds.), Nectaries and nectar (pp. 215-264). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Orozco-Cardenas, M., Narvaez-Vasquez, J., & Ryan, C. (2001). Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell, 13, 179-191.

    Article  CAS  PubMed  Google Scholar 

  • Pastori, G.M., Kiddle, G., Antoniw, J., Bernard, S., Veljovic-Jovanovic, S., Verrier, P.J., Noc-tor, G., & Foyer, C.H. (2003). Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell, 15, 939-951.

    Article  CAS  PubMed  Google Scholar 

  • Pelegrini, P.B., & Franco, O.L. (2005). Plant gamma-thionins: novel insights on the mecha-nism of action of a multi-functional class of defense proteins. International Journal of Biochemistry and Cell Biology, 37, 2239-2253.

    Article  CAS  PubMed  Google Scholar 

  • Peng, Y.B., Li, Y.Q., Hao, Y.J., Xu, Z.H., & Bai, S.N. (2004). Nectar production and trans-portation in the nectaries of the female Cucumis sativus L. flower during anthesis. Protoplasma, 224, 71-78.

    CAS  PubMed  Google Scholar 

  • Peumans, W.J., Smeets, K., Van Nerum, K., Van Leuven, F., & Van Damme, E.J. (1997). Lectin and alliinase are the predominant proteins in nectar from leek (Allium porrum L.) flowers. Planta, 201, 298-302.

    Article  CAS  PubMed  Google Scholar 

  • Ponstein, A.S., Bres-Vloemans, S.A., Sela-Buurlage, M.B., van den Elzen, P.J., Melchers, L.S., & Cornelissen, B.J. (1994). A novel pathogen- and wound-inducible tobacco (Nico-tiana tabacum) protein with antifungal activity. Plant Physiology, 104, 109-118.

    Article  CAS  PubMed  Google Scholar 

  • Prince, R.C., & Gunson, D.E. (1987). Superoxide production in neutrophils. Trends in Bio-chemical Sciences, 12, 86-87.

    Article  CAS  Google Scholar 

  • Raman, K., & Greyson, R.I. (1978). Further observations on the differential sensitivities to plant growth regulators by cultured “single” and “double” flower buds of Nigella damas-cena L. (Ranunculaceae). American Journal of Botany, 65, 180-191.

    Article  CAS  Google Scholar 

  • Robertson, S., Li, Y., Scutt, C., Willis, M., & Gilmartin, P. (1997). Spatial expression dynam-ics of Men-9 delineate the third floral whorl in male and female flowers of dioecious Silene latifolia. Plant Journal, 12, 155-168.

    Article  CAS  PubMed  Google Scholar 

  • Sasabe, M., Takeuchi, K., Kamoun, S., Ichinose, Y., Govers, F., Toyoda, K., Shiraishi, T., & Yamada, T. (2000). Independent pathways leading to apoptotic cell death, oxidative burst and defense gene expression in response to elicitin in tobacco cell suspension culture. European Journal of Biochemistry, 267, 5005-5013.

    Article  CAS  PubMed  Google Scholar 

  • Segura, A., Moreno, M., Madueno, F., Molina, A., & Garcia-Olmedo, F. (1999). Snakin-1, a peptide from potato that is active against plant pathogens. Molecular Plant-Microbe Interactions, 12, 16-23.

    Article  CAS  PubMed  Google Scholar 

  • Seitz, B., Klos, C., Wurm, M., & Tenhaken, R. (2000). Matrix polysaccharide precursors in Arabidopsis cell walls are synthesized by alternate pathways with organ-specific expres-sion patterns. Plant Journal, 21, 537-546.

    Article  CAS  PubMed  Google Scholar 

  • Shuel, R. (1978). Nectar secretion in excised flowers. V. Effects of indoleacetic acid and sugar supply on distribution of [14C]-sucrose in flower tissues and nectar. Canadian Jour-nal of Botany, 56, 565-571.

    Article  CAS  Google Scholar 

  • Shuel, R.W. (1964). Nectar secretion in excised flowers. III. The dual effect of indole-3-acetic acid. Journal of Apicultural Research, 3, 99-111.

    CAS  Google Scholar 

  • Shuel, R.W. (1967). Nectar secretion in excised flowers. IV. Selective transport of sucrose in the presence of other solutes. Canadian Journal of Botany, 45, 1953-1961.

    Article  CAS  Google Scholar 

  • Shuel, R.W., & Tsao, W. (1978). Nectar secretion in excised flowers. VI. Relationship of secretion to protein metabolism. Canadian Journal of Botany, 56, 833-842.

    Article  CAS  Google Scholar 

  • Siegfried, K.R., Eshed, Y., Baum, S.F., Otsuga, D., Drews, G.N., & Bowman, J.L. (1999). Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development, 126, 4117-4141.

    CAS  PubMed  Google Scholar 

  • Song, J.T., Seo, H.S., Song, S.I., Lee, J.S., & Choi, Y.D. (2000). NTR1 encodes a floral nec-tary-specific gene in Brassica campestris L. ssp. pekinensis. Plant Molecular Biology, 42, 647-655.

    Article  CAS  PubMed  Google Scholar 

  • Stintzi, A., Heitz, T., Prasad, V., Wiedemann-Merdinoglu, S., Kauffmann, S., Geoffroy, P., Legrand, M., & Fritig, B. (1993). Plant “pathogenesis-related” proteins and their role in defense against pathogens. Biochimie, 75, 687-706.

    Article  CAS  PubMed  Google Scholar 

  • Stpiczyńska, M. (2003). Nectar resorption in the spur of Platanthera chlorantha Custer (Rchb.) Orchidaceae—structural and microautoradiographic study. Plant Systematics and Evolution, 238, 119-126.

    Google Scholar 

  • Stpiczyńska, M., Davies, K.L., & Gregg, A. (2005). Comparative account of nectary structure in Hexisea imbricata (Lindl.) Rchb.f. (Orchidaceae). Annals of Botany, 95, 749-756.

    Article  PubMed  Google Scholar 

  • Stromvik, M., Sundararaman, V., & Vodkin, L. (1999). A novel promoter from soybean that is active in a complex developmental pattern with and without its proximal 650 base pairs. Plant Molecular Biology, 41, 217-231.

    Article  CAS  PubMed  Google Scholar 

  • Tang, X., Gomes, A.M.T.R., Bhatia, A., & Woodson, W.R. (1994). Pistil-specific and ethyl-ene-regulated expression of 1-aminocyclopropane-1-carboxylate oxidase genes in petunia flowers. Plant Cell, 6, 1227-1239.

    Article  CAS  PubMed  Google Scholar 

  • Thom, C., Guerenstein, P.G., Mechaber, W.L., & Hildebrand, J.G. (2004). Floral CO2 reveals flower profitability to moths. Journal of Chemical Ecology, 30, 1285-1288.

    Article  CAS  PubMed  Google Scholar 

  • Thoma, S., Hecht, U., Kippers, A., Botella, J., de Vries, S., & Somerville, C. (1994). Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis. Plant Physiology, 105, 35-45.

    Article  CAS  PubMed  Google Scholar 

  • Thornburg, R.W., Carter, C., Powell, A., Rizhsky, L., Mittler, R., & Horner, H.T. (2003). A major function of the tobacco floral nectary is defense against microbial attack. Plant Sys-tematics and Evolution, 238, 211-218.

    Google Scholar 

  • Torres, M.A., Dangl, J.L., & Jones, J.D. (2002). Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences USA, 99, 517-522.

    Article  CAS  Google Scholar 

  • Watari, J., Kobae, Y., Shohei, Y., Kunio, Y., Kyoko, T., Toshihito, T., & Katsuhiro, S. (2004). Identification of sorbitol transporters expressed in the phloem of apple source leaves. Plant Cell Physiology, 45, 1032-1041.

    Article  CAS  PubMed  Google Scholar 

  • Watson, R., Zinyowera, M., & Moss, R. (1996). Climate change 1995: impacts, adaptations and mitigation of climate change: scientific technical analysis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Weiss, C.A., Huang, H., & Ma, H. (1993). Immunolocalization of the G protein alpha subunit encoded by the GPA1 gene in Arabidopsis. Plant Cell, 5, 1513-1528.

    Article  CAS  PubMed  Google Scholar 

  • Zauralov, O.A. (1969a). Oxidizing enzymes in nectaries and nectar. Trudy Nauchno-Issledovatel’skogo Instituta Pchelovodstva, 1969, 197-225.

    Google Scholar 

  • Zauralov, O.A. (1969b). Role of glycolysis in nectar secretion in milkweed and pumpkin. Fiziologiya Rastenii (Moscow), 16, 542-529.

    CAS  Google Scholar 

  • Zauralov, O.A., & Pavlinova, O.A. (1975). Transport and transformation of sugars in the nec-tary with respect to secretory function. Fiziologiya Rastenii (Moscow), 22, 500-507.

    CAS  Google Scholar 

  • Zauralov, O.A., & Zauralova, R.F. (1970). Colloid-chemical properties of nectar cells and secretion of nectar. Fiziologiya Rastenii (Moscow), 17, 162-168.

    CAS  Google Scholar 

  • Zhang, L.-Y., Peng, Y.-B., Pelleschi-Travier, S., Fan, Y., Lu, Y.-F., Lu, Y.-M., Gao, X.-P., Shen, Y.-Y., Delrot, S., & Zhang, D.-P. (2004). Evidence for apoplasmic phloem unload-ing in developing apple fruit. Plant Physiology, 135, 574-586.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Thornburg, R.W. (2007). Molecular biology of the Nicotiana floral nectary. In: Nicolson, S.W., Nepi, M., Pacini, E. (eds) Nectaries and Nectar. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5937-7_6

Download citation

Publish with us

Policies and ethics