Skip to main content

Remote Sensing of Seagrass Ecosystems: Use of Spaceborne and Airborne Sensors

  • Chapter
SEAGRASSES: BIOLOGY, ECOLOGYAND CONSERVATION

Abstract

The focus of this chapter lies in describing digital multispectral and hyperspectral remote sensing developments and applications in the mapping and monitoring of seagrass ecosystems. Multispectral refers to a sensor that registers light in a limited number of relatively broad spectral bands (bandwidths of 20–60 nm); hyperspectral (also referred to as imaging spectrometry) is defined for sensors that measure the entire spectrum under consideration in contiguous narrow spectral bands (bandwidths between 2 and 20 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aas E (1987) Two-stream irradiance model for deepwaters. Appl Opt 26: 2095–2101

    Article  CAS  PubMed  Google Scholar 

  • Alberotanza L, Brando VE, Ravagnan G and Zandonella A (1999) Hyperspectral aerial images. A valuable tool for submerged vegetation recognition in the Orbetello Lagoons, Italy. Int J Remote Sensing 20: 523–533

    Article  Google Scholar 

  • Andrefouet S, Payri C, Hochberg EJ, Mao Che L and Atkinson M (2003) Airborne hyperspectral detection of microbial mat pigmentation in Rangiroa atoll (French Polynesia). Limnol Oceanogr 48: 426–430

    Article  Google Scholar 

  • Anstee JM, Dekker AG and Brando VE (2004) Retrospective change detection in a shallow coastal tidal lake: Mapping seagrasses in Wallis Lake, Australia. In: Analysis of Multitemporal remote sensing images, Series in Remote Sensing, Vol 3, pp 277–285. World Scientific Publishing Co., Singapore

    Google Scholar 

  • Bajjouk T, Guillaumont B and Populus J (1996) Application of airborne imaging spectrometry system data to intertidal seaweed classification and mapping. Hydrobiologia 326/327: 463–471

    Article  Google Scholar 

  • Bierwirth PN, Lee TJ and Burne RV (1993) Shallow sea-floor reflectance and water depth derived by unmixing multispectral imagery. Photogrammetric Eng Remote Sensing 59: 331–338

    Google Scholar 

  • Clark CD, Ripley HT, Green EP, Edwards AJ and Mumby PJ (1997) Mapping and measurement of tropical coastal environments with hyperspectral and high spatial resolution data. Int J Remote Sensing 18: 237–242

    Article  Google Scholar 

  • DekkerAG, Brando VE, Anstee JM, PinnelN, Kutser T, Hoogenboom J, Peters SWM, Pasterkamp R, Vos RJ, Olbert C and Malthus TJ (2001) Imaging spectrometry of water. Imaging Spectrometry: Basic Principles and Prospective Applications, IV, pp 307–359. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Dierssen H, Zimmerman RC, Leather RA, Downes V and Davis CO (2003) Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by high resolution airborne imagery. Limnol Oceanogr 48: 444–455

    Article  Google Scholar 

  • Fyfe SK (2003) Spatial and temporal variation in spectral reflectance: Are seagrass species spectrally distinct? Limnol Oceanogr 48: 464–479

    Article  Google Scholar 

  • Green EP and Short FT (eds) (2003)World Atlas of Seagrasses, p 310. University of California Press, LA

    Google Scholar 

  • Hochberg EJ and Atkinson MJ (2000) Spectral discrimination of coral reef benthic communities. Coral Reefs 19: 164–171

    Article  Google Scholar 

  • Hochberg EJ, Atkinson MJ and Andréfouët S (2003) Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing. Remote Sensing Environ 85: 159–173

    Article  Google Scholar 

  • Holden H and Ledrew E (1999) Hyperspectral identification of coral reef features. International Journal of Remote Sensing, 20: 2545–2563

    Article  Google Scholar 

  • Jakubauskas ME, Kindscher K, Fraser A, Debinski DM and Price KP (2000) Close-range remote sensing of aquatic macrophyte vegetation cover. Int J Remote Sensing 21: 3533–3538

    Article  Google Scholar 

  • Jensen JR, Rutchey K, Koch MS and Narumalani S (1995) Inland wetland change detection in the everglades water conservation area 2a using a time-series of normalized remotely-sensed data. Photogrammetric Eng Remote Sensing 61: 199–209

    Google Scholar 

  • Joyce K and Phinn SR (2003) Hyperspectral analysis of chlorophyll content and photosynthetic capacity of coral reef substances. Limnol Oceanogr 48: 489–496

    Article  Google Scholar 

  • Karpouzli E, Malthus TJ and Place CJ (2004) Hyperspectral discrimination of coral reef benthic communities in the western Caribbean. Coral Reefs 23: 141–151

    Article  Google Scholar 

  • Karpouzli E, Malthus TJ, Place C, Mitchell Chui A, Ines Garcia M and Mair JD (2003) Underwater light characterisation for correction of remotely sensed images. Int J Remote Sensing 24: 2683–2702

    Article  Google Scholar 

  • Kirk JTO (1989) The upwelling light stream in natural waters. Limnol Oceanogr 34: 1410–142

    Article  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. University Press, Cambridge, UK 509 pp

    Google Scholar 

  • Kutser T, Dekker AG and Skirving W (2003) Modeling spectral discrimination of Great Barrier Reef benthic communities by remote sensing instruments. Limnol Oceanogr 48: 497–510

    Article  Google Scholar 

  • Louchard EM, Reid P, Stephens C, Davis CO, Leathers RA and Downes V (2003) Optical remote sensing of habitats and bathymetry in coastal environments at Lee Stocking Island, Bahamas. A comparative spectral classification approach. Limnol Oceanogr 48: 511–521

    Article  Google Scholar 

  • LubinD, LiW, Dustan P, Mazel C and Stamnes K (2001) Spectral signatures of coral reefs: Features from space. Remote Sensing Environ 75: 127–137

    Article  Google Scholar 

  • Macleod RD and Congalton RG (1998) A quantitative comparison of change-detection algorithms for monitoring eelgrass from remote sensing data. Photogrammetric Eng Remote Sensing 64: 207–216

    Google Scholar 

  • Malthus TJ, Best EPH and Dekker AG (1990) An assessment of the importance of emergent and floating-leaved macrophytes to trophic status in the Loosdrecht Lakes (The Netherlands). Hydrobiologia 191: 257–263

    Article  CAS  Google Scholar 

  • Malthus TJ and George DG (1997) Airborne remote sensing of macrophytes in Cefni Reservoir, Anglesey, UK. Aquat Bot 58: 317–332

    Article  Google Scholar 

  • Malthus TJ and Karpouzli E (2003) Integrating field and high spatial resolution satellite based methods for monitoring shallow submersed aquatic habitats in the Sound of Eriskay, Scotland, UK. Int J Remote Sensing 24: 2585–2593

    Article  Google Scholar 

  • Malthus TJ and Mumby PJ (2003) Remote sensing of the coastal zone: An overview and priorities for future research. Int J Remote Sensing 24: 2805–2815

    Article  Google Scholar 

  • Maritorena S, Morel A and Gentili B (1994) Diffuse reflectance of oceanic shallowwaters: Influence ofwater depth and bottom albedo. Limnol Oceanogr 39: 1689–1703

    Article  Google Scholar 

  • Mobley CD (1994) Light and water; Radiative transfer in natural waters. Academic Press, London, 592 pp

    Google Scholar 

  • Mumby PJ and Edwards AJ (2002) Mapping marine environments with IKONOS imagery: Enhanced spatial resolution can deliver greater thematic accuracy. Remote Sensing Environ 82: 248–257

    Article  Google Scholar 

  • Mumby PJ, Green EP, Clark CD and Edwards AJ (1998) Digital analysis of multispectral airborne imagery of coral reefs. Coral Reefs 17: 59–69

    Article  Google Scholar 

  • Mumby PJ, Green EP, Edwards AJ and Clark CD (1997a) Coral reef habitat mapping: How much detail can remote sensing provide? Mar Biol 130: 193–202

    Article  Google Scholar 

  • Mumby PJ, Green EP, Edwards AJ and Clark CD (1997b) Measurement of seagrass standing crop using satellite and digital airborne remote sensing. Mar Ecol Prog Ser 159: 51–60

    Google Scholar 

  • Mumby PJ, Green EP, Edwards AJ and Clark CD (1999) The cost effectiveness of remote sensing for tropical coastal resources and management. J Environ Manage 55: 157–166

    Article  Google Scholar 

  • Myers MR, Hardy JT, Mazel CH and Dustan P (1999) Optical spectra and pigmentation of Caribbean reef corals and macroalgae. Coral Reefs 18: 179–186

    Article  Google Scholar 

  • Pasqualini Y, Pergent-Martini C, Clabaut P, Morteel H and Pergent G (2001) Integration of aerial remote sensing, photogrammetry and GIS technology in seagrass mapping. Photogrammetric Eng Remote Sensing 67: 99–105

    Google Scholar 

  • Philpot WD and Vodacek A (1989) Laser-induced fluorescence: limits to the remote detection of hydrogen ion, aluminium, and dissolved organic matter. Remote Sens Environ, 29: 51–65

    Article  Google Scholar 

  • Robblee MB, Barber TR, Carlson PR, Jr, Durako MJ, Fourqurean JW, Muehlstein LK, Porter D, Yarbro LA, Zieman RT and Zieman JC (1991) Mass mortality of the tropical seagrass Thalassia testudinum in Florida Bay. (USA). Mar Ecol Prog Ser 71: 297–299

    Google Scholar 

  • Short FT and Coles RG (eds) (2001) Global Seagrass Research Methods, p 482. Elsevier Publishing Co., Amsterdam

    Google Scholar 

  • Thomson AG, Fuller RM, Sparks TH, Yates MG and Eastwood JA (1998) Ground and airborne radiometry over intertidal surfaces: Waveband selection for cover classification. Int J Remote Sensing 19: 1189–1205

    Article  Google Scholar 

  • Ward DH, Markon CJ and Douglas DC (1996) Distribution and stability of eelgrass beds at Izembek Lagoon, Alaska. Aquat Bot 58: 229–240

    Article  Google Scholar 

  • Zacharias M, Niemann O and Borstad G (1992) An assessment and classification of a multispectral band set for the remote sensing of intertidal seaweeds. Can J Remote Sensing 18: 263–274

    Google Scholar 

  • Zainal AJM, Dalby DH and Robinson IS (1993) Monitoring marine ecological changes on the east coast of Bahrain with Landsat TM. Photogrammetric Eng Remote Sensing 59: 415–421

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Dekker, A., Brando, V., Anstee, J., Fyfe, S., Malthus, T., Karpouzli, E. (2007). Remote Sensing of Seagrass Ecosystems: Use of Spaceborne and Airborne Sensors. In: SEAGRASSES: BIOLOGY, ECOLOGYAND CONSERVATION. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2983-7_15

Download citation

Publish with us

Policies and ethics