Skip to main content

Identification, Characterization, and Optimization of Split Inteins

  • Protocol
  • First Online:
Expressed Protein Ligation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2133))

Abstract

In recent years, split inteins have seen widespread use as molecular platforms for the design of a variety of peptide and protein chemistry technologies, most notably protein ligation. The development of these approaches is dependent on the identification and/or design of split inteins with robust activity, stability, and solubility. Here, we describe two approaches to characterize and compare the activities of newly identified or engineered split inteins. The first assay employs an E. coli-based selection system to rapidly screen the activities of many inteins and can be repurposed for directed evolution. The second assay utilizes reverse-phase high-performance liquid chromatography (RP-HPLC) to provide insights into individual chemical steps in the protein splicing reaction, information that can guide further engineering efforts. These techniques provide useful alternatives to common assays that utilize SDS-PAGE to analyze splicing reaction progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shah NH, Muir TW (2014) Inteins: nature’s gift to protein chemists. Chem Sci 5:446–461

    Article  CAS  PubMed  Google Scholar 

  2. Kane PM, Yamashiro CT, Wolczyk DF, Neff N, Goebl M, Stevens TH (1990) Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science 250:651–657

    Article  CAS  PubMed  Google Scholar 

  3. Topilina NI, Novikova O, Stanger M, Banavali NK, Belfort M (2015) Post-translational environmental switch of RadA activity by extein-intein interactions in protein splicing. Nucleic Acids Res 43:6631–6648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Topilina NI, Green CM, Jayachandran P, Kelley DS, Stanger MJ, Piazza CL, Nayak S, Belfort M (2015) SufB intein of Mycobacterium tuberculosis as a sensor for oxidative and nitrosative stresses. Proc Natl Acad Sci U S A 112:10348–10353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lennon CW, Stanger M, Belfort M (2016) Protein splicing of a recombinase intein induced by ssDNA and DNA damage. Genes Dev 30:2663–2668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lennon CW, Stanger M, Banavali NK, Belfort M (2018) Conditional protein splicing switch in hyperthermophiles through an intein-extein partnership. MBio 9(1):e02304–e02317. https://doi.org/10.1128/mBio.02304-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kelley DS, Lennon CW, Li Z, Miller MR, Banavali NK, Li H, Belfort M (2018) Mycobacterial DnaB helicase intein as oxidative stress sensor. Nat Commun 9:4363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Vila-Perelló M, Muir TW (2010) Biological applications of protein splicing. Cell 143:191–200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A 95:6705–6710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chong S, Mersha FB, Comb DG et al (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192:271–281

    Article  CAS  PubMed  Google Scholar 

  11. Lahiry A, Fan Y, Stimple SD, Raith M, Wood DW (2017) Inteins as tools for tagless and traceless protein purification. J Chem Technol Biotechnol 93:1827–1835

    Article  CAS  Google Scholar 

  12. Camarero JA, Muir TW (1999) Biosynthesis of a head-to-tail cyclized protein with improved biological activity. J Am Chem Soc 121:5597–5598

    Article  CAS  Google Scholar 

  13. Evans TC, Martin D, Kolly R, Panne D, Sun L, Ghosh I, Chen L, Benner J, Liu XQ, Xu MQ (2000) Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J Biol Chem 275:9091–9094

    Article  CAS  PubMed  Google Scholar 

  14. Tavassoli A (2017) SICLOPPS cyclic peptide libraries in drug discovery. Curr Opin Chem Biol 38:30–35

    Article  CAS  PubMed  Google Scholar 

  15. Ozawa T, Nogami S, Sato M, Ohya Y, Umezawa Y (2000) A fluorescent indicator for detecting protein-protein interactions in vivo based on protein splicing. Anal Chem 72:5151–5157

    Article  CAS  PubMed  Google Scholar 

  16. Jeon H, Lee M, Jang W, Kwon Y (2016) Intein-mediated protein engineering for biosensor fabrication. Biochip J 10:277–287

    Article  CAS  Google Scholar 

  17. Slomovic S, Collins JJ (2015) DNA sense-and-respond protein modules for mammalian cells. Nat Methods 12:1085–1090

    Article  CAS  PubMed  Google Scholar 

  18. Mootz HD, Blum ES, Tyszkiewicz AB, Muir TW (2003) Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J Am Chem Soc 125:10561–10569

    Article  CAS  PubMed  Google Scholar 

  19. Giriat I, Muir TW (2003) Protein semi-synthesis in living cells. J Am Chem Soc 125:7180–7181

    Article  CAS  PubMed  Google Scholar 

  20. Borra R, Dong D, Elnagar AY, Woldemariam GA, Camarero JA (2012) In-cell fluorescence activation and labeling of proteins mediated by FRET-quenched split inteins. J Am Chem Soc 134:6344–6353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. David Y, Vila-Perelló M, Verma S, Muir TW (2015) Chemical tagging and customizing of cellular chromatin states using ultrafast trans-splicing inteins. Nat Chem 7:394–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Southworth MW, Adam E, Panne D, Byer R, Kautz R, Perler FB (1998) Control of protein splicing by intein fragment reassembly. EMBO J 17:918–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mills KV, Lew BM, Jiang S, Paulus H (1998) Protein splicing in trans by purified N- and C-terminal fragments of the Mycobacterium tuberculosis RecA intein. Proc Natl Acad Sci U S A 95:3543–3548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brenzel S, Kurpiers T, Mootz HD (2006) Engineering artificially split inteins for applications in protein chemistry: biochemical characterization of the split Ssp DnaB intein and comparison to the split Sce VMA intein. Biochemistry 45:1571–1578

    Article  CAS  PubMed  Google Scholar 

  25. Shah NH, Dann GP, Vila-Perelló M, Liu Z, Muir TW (2012) Ultrafast protein splicing is common among cyanobacterial split inteins: implications for protein engineering. J Am Chem Soc 134:11338–11341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shah NH, Muir TW (2011) Split inteins: nature’s protein ligases. Isr J Chem 51:854–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vila-Perelló M, Liu Z, Shah NH, Willis JA, Idoyaga J, Muir TW (2013) Streamlined expressed protein ligation using split inteins. J Am Chem Soc 135:286–292

    Article  PubMed  CAS  Google Scholar 

  28. Shi J, Muir TW (2005) Development of a tandem protein trans-splicing system based on native and engineered split inteins. J Am Chem Soc 127:6198–6206

    Article  CAS  PubMed  Google Scholar 

  29. Shah NH, Vila-Perelló M, Muir TW (2011) Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. Angew Chem Int Ed Engl 50:6511–6515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stevens AJ, Sekar G, Gramespacher JA, Cowburn D, Muir TW (2018) An atypical mechanism of split intein molecular recognition and folding. J Am Chem Soc 140:11791–11799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu H, Hu Z, Liu XQ (1998) Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A 95:9226–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Perler FB (2002) Inbase: the intein database. Nucleic Acids Res 30:383–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Waters E, Hohn MJ, Ahel I et al (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci U S A 100:12984–12988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Caspi J, Amitai G, Belenkiy O, Pietrokovski S (2003) Distribution of split DnaE inteins in cyanobacteria. Mol Microbiol 50:1569–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dassa B, London N, Stoddard BL, Schueler-Furman O, Pietrokovski S (2009) Fractured genes: a novel genomic arrangement involving new split inteins and a new homing endonuclease family. Nucleic Acids Res 37:2560–2573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Novikova O, Topilina N, Belfort M (2014) Enigmatic distribution, evolution, and function of inteins. J Biol Chem 289:14490–14497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iwai H, Züger S, Jin J, Tam P-H (2006) Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett 580:1853–1858

    Article  CAS  PubMed  Google Scholar 

  38. Zettler J, Schütz V, Mootz HD (2009) The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett 583:909–914

    Article  CAS  PubMed  Google Scholar 

  39. Carvajal-Vallejos P, Pallissé R, Mootz HD, Schmidt SR (2012) Unprecedented rates and efficiencies revealed for new natural split inteins from metagenomic sources. J Biol Chem 287:28686–28696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gramespacher JA, Stevens AJ, Nguyen DP, Chin JW, Muir TW (2017) Intein zymogens: conditional assembly and splicing of split inteins via targeted proteolysis. J Am Chem Soc 139:8074–8077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pan D, Xuan B, Sun Y, Huang S, Xie M, Bai Y, Xu W, Qian Z (2016) An intein-mediated modulation of protein stability system and its application to study human cytomegalovirus essential gene function. Sci Rep 6:26167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang T, Badran AH, Huang TP, Liu DR (2018) Continuous directed evolution of proteins with improved soluble expression. Nat Chem Biol 14:972–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Amitai G, Callahan BP, Stanger MJ, Belfort G, Belfort M (2009) Modulation of intein activity by its neighboring extein substrates. Proc Natl Acad Sci U S A 106:11005–11010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cheriyan M, Pedamallu CS, Tori K, Perler F (2013) Faster protein splicing with the Nostoc punctiforme DnaE intein using non-native extein residues. J Biol Chem 288:6202–6211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shah NH, Eryilmaz E, Cowburn D, Muir TW (2013) Extein residues play an intimate role in the rate-limiting step of protein trans-splicing. J Am Chem Soc 135:5839–5847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lockless SW, Muir TW (2009) Traceless protein splicing utilizing evolved split inteins. Proc Natl Acad Sci U S A 106:10999–11004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Appleby-Tagoe JH, Thiel IV, Wang Y, Wang Y, Mootz HD, Liu X-Q (2011) Highly efficient and more general cis- and trans-splicing inteins through sequential directed evolution. J Biol Chem 286:34440–34447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thiel IV, Volkmann G, Pietrokovski S, Mootz HD (2014) An atypical naturally split intein engineered for highly efficient protein labeling. Angew Chem Int Ed Engl 53:1306–1310

    Article  CAS  PubMed  Google Scholar 

  49. Stevens AJ, Brown ZZ, Shah NH, Sekar G, Cowburn D, Muir TW (2016) Design of a split intein with exceptional protein splicing activity. J Am Chem Soc 138:2162–2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ramirez M, Valdes N, Guan D, Chen Z (2013) Engineering split intein DnaE from Nostoc punctiforme for rapid protein purification. Protein Eng Des Sel 26:215–223

    Article  CAS  PubMed  Google Scholar 

  51. Stevens AJ, Sekar G, Shah NH, Mostafavi AZ, Cowburn D, Muir TW (2017) A promiscuous split intein with expanded protein engineering applications. Proc Natl Acad Sci U S A 114:8538–8543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Daugelat S, Jacobs WR (1999) The Mycobacterium tuberculosis recA intein can be used in an ORFTRAP to select for open reading frames. Protein Sci 8:644–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sarin VK, Kent SBH, Tam JP, Merrifield RB (1981) Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal Biochem 117:147–157

    Article  CAS  PubMed  Google Scholar 

  54. Sun P, Ye S, Ferrandon S, Evans TC, Xu M-Q, Rao Z (2005) Crystal structures of an intein from the split dnaE gene of Synechocystis sp. PCC6803 reveal the catalytic model without the penultimate histidine and the mechanism of zinc ion inhibition of protein splicing. J Mol Biol 353:1093–1105

    Article  CAS  PubMed  Google Scholar 

  55. Batjargal S, Walters CR, Petersson EJ (2015) Inteins as traceless purification tags for unnatural amino acid proteins. J Am Chem Soc 137:1734–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

N.H.S and A.J.S. are both supported by grants from the Damon Runyon Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neel H. Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shah, N.H., Stevens, A.J. (2020). Identification, Characterization, and Optimization of Split Inteins. In: Vila-Perelló, M. (eds) Expressed Protein Ligation. Methods in Molecular Biology, vol 2133. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0434-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0434-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0433-5

  • Online ISBN: 978-1-0716-0434-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics