Skip to main content

Protein Adsorption to Biomaterials

  • Chapter
  • First Online:
Biological Interactions on Materials Surfaces

Abstract

Within milliseconds after biomaterials come in contact with a biological fluid such as blood, proteins begin to adhere to the surface through a process known as protein adsorption. Protein adsorption is initially strongly influenced by protein diffusion, but protein affinity for the surface becomes critically important and, over time, higher-affinity proteins can be replaced by lower-affinity proteins in a dynamic process. By the time cells arrive, the material surface has already been coated in a monolayer of proteins; hence, the host cells do not “see” the material but “see” instead a dynamic layer of proteins. Multiple parameters influence protein adsorption to a substrate surface including the chemical and physical properties of both the protein and the material surface, as well as the presence of other proteins on the surface.

Many methods have been developed in the last several decades to study protein adsorption to biomaterial surfaces. These new techniques provide information about the type and conformation of adsorbed proteins from multicomponent solutions such as blood serum. Nanomaterials as well as functional group immobilization and novel, stimuli-sensitive polymer surfaces have provided new alternatives for the study and modulation of protein adsorption, with insight into the mechanisms underlying protein adsorption and subsequent cell adhesion. However, a molecular-level understanding of all aspects of protein adsorption is still incomplete. The future of this field, however, is bright as new technologies offer great promise for further elucidation of protein adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM :

Atomic force microscopy

ATR-FTIR :

Attenuated total reflectance-Fourier transform infrared spectroscopy

ELISA :

Enzyme-linked immunosorbent assay

FTIR :

Fourier transform infrared spectroscopy

HA :

Hydroxyapatite

IR :

Infrared

MALDI-ToF/MS :

Matrix-assisted laser desorption/ionization time-of-flight massspectrometry

PEG:

Polyethylene glycol

PEO:

Polyethylene oxide

pI :

Isoelectric point

PLGA:

Poly(lactic-co-glycolic acid)

PLLA:

Poly(l-lactic acid)

PNIPAAm:

Poly(N-isopropylacrylamide)

RGD:

Arginine–glycine–aspartic acid

SAM:

Self-assembled monolayer

SEIRA:

Surface-enhanced infrared absorption

SEM:

Scanning electron microscopy

SPR:

Surface plasmon resonance

STM:

Scanning tunneling microscopy

ToF-SIMS:

Time-of-flight secondary ion mass spectrometry

XPS:

X-ray photoelectron spectroscopy

2D:

Two dimensional

3D:

Three dimensional

References

  1. Dee KC, Puleo DA, Bizios R. Protein–surface interactions. In: Dee KC, Puleo DA, Bizios R, editors. An intro­duction to tissue-biomaterial interactions. Hoboken, NJ: John Wiley and Sons, 2002

    Google Scholar 

  2. Horbett TA. The role of adsorbed proteins in tissue response to biomaterials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. Biomaterials science. An introduction to materials in medicine. San Diego: Elsevier Academic Press, 2004, pp. 237–246

    Google Scholar 

  3. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol 2008;20:86–100

    Article  CAS  Google Scholar 

  4. Nakanishi K, Sakiyama T, Imamura K. On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J Biosci Bioeng 2001;91(3):233–244

    CAS  Google Scholar 

  5. Ramsden JJ. Puzzles and paradoxes in protein adsorption. Chem Soc Rev 1995;73–78

    Google Scholar 

  6. Kim MS, Khang G, Lee HB. Gradient polymer surfaces for biomedical applications. Prog Polym Sci 2008;33:138–164

    Article  CAS  Google Scholar 

  7. Sun S, Yue Y, Hunag X, Meng D. Protein adsorption on blood–contact membranes. J Membr Sci 2003; 222:3–18

    Article  CAS  Google Scholar 

  8. Thevenot P, Wenjing H, Tang L. Surface chemistry influences implant biocompatibility. Curr Top Med Chem 2008;8:270–280

    Article  CAS  Google Scholar 

  9. Roach P, Eglin D, Rhode K, Perry CC. Modern biomaterials: a review – bulk properties and implications of surface modifications. J Mater Sci: Mater Med 2007;18:1263–1277

    Article  CAS  Google Scholar 

  10. Reintjes T, Tessmar J, Gopferich A. Biomimetic polymers to control cell adhesion. J Drug Del Sci Tech 2008;18(1):15–24

    CAS  Google Scholar 

  11. Ratner BD, Bryant SJ. Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 2004;6:41–75

    Article  CAS  Google Scholar 

  12. Mayorga L, Ratner BD, Horbett TA. The role of complement adsorption and activation in monocyte adhesion to ultralow protein adsorption surfaces made by RF plasma deposition of PEO–like tetraethylene glycol dimethyl ether (tetraglyme). World Biomater Congr 2008:1162.

    Google Scholar 

  13. Schmidt DR, Kao WJ. Monocyte activation in response to polyethylene glycol hydrogels grafted with RGD and PHSRN separated by interpositional spacers of various lengths. J Biomed Mater Res 2007;83A(3):617–625

    Article  CAS  Google Scholar 

  14. Miller R, Fainerman VB, Leser ME, Michel M. Kinetics of adsorption of proteins and surfactants. Curr Opin Colloid Interface Sci 2004;9:350–356

    Article  CAS  Google Scholar 

  15. Merret K, Cornelius RM, McClung WG, Unsworth LD, Sheardown H. Surface analysis methods for characterizing polymeric biomaterials. J Biomater Sci Polym Ed 2002;6:593–621

    Article  Google Scholar 

  16. Bhaduri A, Das KP. Proteins at solid water interface – a review. J Dispers Sci Technol 1999;20(4):1097–1123

    Article  CAS  Google Scholar 

  17. McArthur SL. Applications of XPS in bioengineering. Surf Interface Anal 2006;38:1380–1385

    Article  CAS  Google Scholar 

  18. Wahlgren M, Arnebrant T. Protein adsorption to solid surfaces. Tibtech 1991;9:201–208

    Article  CAS  Google Scholar 

  19. Hlady V, Buijs J, Jennissen P. Methods for studying protein adsorption. Methods Enzymol 1999;309(26): 402–429

    Article  CAS  Google Scholar 

  20. Ataka K, Heberle J. Biochemical applications of surface–enhanced infrared absorption spectroscopy. Anal Bioanal Chem 2007;388:47–54

    Article  CAS  Google Scholar 

  21. Elwing H. Protein absorption and ellipsometry in biomaterial research. Biomaterials 1998;19:397–406

    Article  CAS  Google Scholar 

  22. Gallagher WM, Lynch I, Allen LT, Miller I, Penney SC, O’Connor DP, Pennington S, Keenan AK, Dawson KA. Molecular basis of cell–biomaterial interaction: Insights gained from transcriptomic and proteomic studies. Biomaterials 2006;27:5871–5882

    Article  CAS  Google Scholar 

  23. Silva LP. Imaging proteins with atomic force microscopy: an overview. Curr Protein Pept Sci 2005;6:387–395

    Article  CAS  Google Scholar 

  24. Bonanni B, Andolfi L, Bizzarri R, Cannistraro S. Functional metalloproteins integrated with conductive substrates: detecting single molecules and sensing individual recognition events. J Phys Chem B 2007;111: 5062–5075

    Article  CAS  Google Scholar 

  25. Garczarek F, Gerwert K. Integration of layered redox proteins and conductive supports for bioelectronic applications. Agnew Chem Int Ed 2000;39:1180–1218

    Article  Google Scholar 

  26. Liu H, Webster TJ. Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials 2007;28:354–369

    Article  Google Scholar 

  27. Vinu A, Miyahara M, Ariga K. Assemblies of biomaterials in mesoporous media. J Nanosci Nanotechnol 2006;6(6):1510–1532

    Article  CAS  Google Scholar 

  28. Wie G, Ma PX. Structure and properties of nano–hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 2004;25:4749–4757

    Article  Google Scholar 

  29. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 2000;51(3):475–483

    Article  CAS  Google Scholar 

  30. Webster TJ, Schadler LS, Siegel RW, Bizios R. Mechanisms of enhanced osteoblasts adhesion on nanophase alumina involve vitronectin. Tissue Eng 2001;7(3):291.301

    Article  Google Scholar 

  31. Miller DC, Haberstroh KM, Webster TJ. PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion. J Biomed Mater Res 2007;81A(3):678–684

    Article  CAS  Google Scholar 

  32. Liu L, Chen S, Giachelli CM, Ratner BD, Jian S. Controlling osteopontin orientation on surfaces to modulate endothelial cell adhesion. J Biomed Mater Res 2005;74:23–31

    Article  Google Scholar 

  33. Jandt KD. Evolutions, revolutions and trends in biomaterials science – a perspective. Adv Eng Mater 2007;9(12):1035–1050

    Article  Google Scholar 

  34. Mano JF. Stimuli–responsive polymeric systems for biomedical applications. Adv Eng Mater 2008;10(6): 515–527

    Article  CAS  Google Scholar 

  35. Nakanishi J, Kikuchi Y, Takarada T, Nakayama H, Yamaguchi K, Maeda M. Spatiotemporal control of cell adhesion on a self-assembled monolayer having a photocleavable protecting group. Anal Chim Acta 2006;578:100

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schmidt, D.R., Waldeck, H., Kao, W.J. (2009). Protein Adsorption to Biomaterials. In: Puleo, D., Bizios, R. (eds) Biological Interactions on Materials Surfaces. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98161-1_1

Download citation

Publish with us

Policies and ethics