Skip to main content

Leishmania Invasion and Phagosome Biogenesis

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 47))

Abstract

Whereas bacterial pathogens take over the control of their host cell actin cytoskeleton by delivering an array of protein effectors through specialized secretion systems, promastigotes of the protozoan parasite Leishmania donovani rely entirely upon a cell surface glycolipid to achieve this feat. Here, we review recent evidence that L. donovani promastigotes subvert host macrophage actin dynamics during the establishment of infection and we discuss the potential mechanisms involved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander J, Russell DG. The interaction of Leishmania species with macrophages. Adv Parasitol 1992; 31:175–254.

    Article  PubMed  CAS  Google Scholar 

  2. Sacks DL. Metacyclogenesis in Leishmania promastigotes. Exp Parasitol 1989; 69:100–103.

    Article  PubMed  CAS  Google Scholar 

  3. Descoteaux A, Turco SJ. Glycoconjugates in Leishmania infectivity. Biochim Biophys Acta 1999; 1455:341–352.

    PubMed  CAS  Google Scholar 

  4. Turco SJ, Descoteaux A. The lipophosphoglycan of Leishmania parasites. Annu Rev Microbiol 1992; 46:65–94.

    Article  PubMed  CAS  Google Scholar 

  5. Sacks D, Kamhawi S. Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annu Rev Microbiol 2001; 55:453–483.

    Article  PubMed  CAS  Google Scholar 

  6. Huang C, Turco SJ. Defective galactofuranose addition in lipophosphoglycan biosynthesis in a mutant of Leishmania donovani. J Biol Chem 1993; 268:24060–24066.

    PubMed  CAS  Google Scholar 

  7. Descoteaux A, Luo Y, Turco SJ et al. A specialized pathway affecting virulence glycoconjugates of Leishmania. Science 1995; 269:1869–1872.

    Article  PubMed  CAS  Google Scholar 

  8. Ilg T, Demar M, Harbecke D. Phosphoglycan repeat-deficient Leishmania mexicana parasites remain infectious to macrophages and mice. J Biol Chem 2001; 276:4988–4997.

    Article  PubMed  CAS  Google Scholar 

  9. McNeely TB, Turco SJ. Requirement of lipophosphoglycan for intracellular survival of Leishmania donovani within human monocytes. J Immunol 1990; 144:2745–2750.

    PubMed  CAS  Google Scholar 

  10. Späth GF, Epstein L, Leader B et al. Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proc Natl Acad Sci USA 2000; 97:9258–9263.

    Article  PubMed  Google Scholar 

  11. Turco SJ, Späth GF, Beverley SM. Is lipophosphoglycan a virulence factor? A surprising diversity between Leishmania species. Trends Parasitol 2001; 17(5):223–226.

    Article  PubMed  CAS  Google Scholar 

  12. Blackwell JM. Receptors and recognition mechanisms of Leishmania species. Trans R Soc Trop Med Hyg 1985; 79:606–612.

    Article  PubMed  CAS  Google Scholar 

  13. Kane MM, Mosser DM. Leishmania parasites and their ploys to disrupt macrophage activation. Curr Opin Hematol 2000; 7:26–31.

    Article  PubMed  CAS  Google Scholar 

  14. Joshi PB, Kelly BL, Kamhawi S et al. Targeted gene deletion in Leishmania major identifies leishmanolysin (GP63) as a virulence factor. Mol Biochem Parasitol 2002; 120:33–40.

    Article  PubMed  CAS  Google Scholar 

  15. Green PJ, Feizi T, Stoll MS et al. Recognition of the major cell surface glycoconjugates of Leishmania parasites by the human serum mannan-binding protein. Mol Biochem Parasitol 1994; 66:319–328.

    Article  PubMed  CAS  Google Scholar 

  16. Pelletier I, Sato S. Specific recognition and cleavage of galectin-3 by Leishmania major through species-specific polygalactose epitope. J Biol Chem 2002; 277:17663–17670.

    Article  PubMed  CAS  Google Scholar 

  17. Pelletier I, Hashidate T, Urashima T et al. Specific recognition of Leishmania major poly-beta-galactosyl epitopes by galectin-9: Possible implication of galectin-9 in interaction between L. major and host cells. J Biol Chem 2003; 278:22223–22230.

    Article  PubMed  CAS  Google Scholar 

  18. Privé C, Descoteaux A. Leishmania donovani promastigotes evade the activation of mitogen-activated protein kinases p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase-1/2 during infection of naive macrophages. Eur J Immunol 2000; 30:2235–2244.

    Article  PubMed  Google Scholar 

  19. Chimini G, Chavrier P. Function of Rho family proteins in actin dynamics during phagocytosis and engulfment. Nat Cell Biol 2000; 2:E191–E196.

    Article  PubMed  CAS  Google Scholar 

  20. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002; 420:629–635.

    Article  PubMed  CAS  Google Scholar 

  21. Hoppe AD, Swanson JA. Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis. Mol Biol Cell 2004; 15:3509–3519.

    Article  PubMed  CAS  Google Scholar 

  22. Coppolino MG, Krause M, HagendorfF P et al. Evidence for a molecular complex consisting of Fyb/SLAP, SLP-76, Nck, VASP and WASP that links the actin cytoskeleton to Fcψ receptor signalling during phagocytosis. J Cell Sci 2001; 114:4307–4318.

    PubMed  CAS  Google Scholar 

  23. Olazabal IM, Caron E, May RC et al. Rho-kinase and myosin-II control phagocytic cup formation during CR, but not FcγR, phagocytosis. Curr Biol 2002; 12:1413–1418.

    Article  PubMed  CAS  Google Scholar 

  24. Le Cabec V, Carreno S, Moisand A et al. Complement receptor 3 (CD11b/CD 18) mediates type I and type II phagocytosis during nonopsonic and opsonic phagocytosis, respectively. J Immunol 2002; 169:2003–2009.

    PubMed  Google Scholar 

  25. Lodge R, Descoteaux A. Leishmania donovani promastigotes induce periphagosomal F-actin accumulation through retention of the GTPase Cdc42. Cell Microbiol 2005; 7:1647–1658.

    Article  PubMed  CAS  Google Scholar 

  26. Love DC, Mentink Kane M, Mosser DM. Leishmania amazonensis: The phagocytosis of amastigotes by macrophages. Exp Parasitol 1998; 88:161–171.

    Article  PubMed  CAS  Google Scholar 

  27. Morehead J, Coppens I, Andrews NW. Opsonization modulates Rac-1 activation during cell entry by Leishmania amazonensis. Infect Immun 2002; 70:4571–4580.

    Article  PubMed  CAS  Google Scholar 

  28. Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 1999; 17:593–623.

    Article  PubMed  CAS  Google Scholar 

  29. Duclos S, Diez R, Garin J et al. Rab5 regulates the kiss and run fusion between phagosomes and endosomes and the acquisition of phagosome leishmanicidal properties in RAW 264.7 macrophages. J Cell Sci 2000; 113:3531–3541.

    PubMed  CAS  Google Scholar 

  30. Vieira OV, Botelho RJ, Rameh L et al. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol 2001; 155:19–25.

    Article  PubMed  CAS  Google Scholar 

  31. Vieira OV, Bucci C, Harrison RE et al. Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase. Mol Cell Biol 2003; 23:2501–2514.

    Article  PubMed  CAS  Google Scholar 

  32. Desjardins M, Descoteaux A. Inhibition of phagolysosomal biogenesis by the Leishmania lipophosphoglycan. J Exp Med 1997; 185:2061–2068.

    Article  PubMed  CAS  Google Scholar 

  33. Dermine JF, Scianimanico S, Privé C et al. Leishmania promastigotes require lipophosphoglycan to actively modulate the fusion properties of phagosomes at an early step of phagocytosis. Cell Microbiol 2000; 2:115–126.

    Article  PubMed  CAS  Google Scholar 

  34. Scianimanico S, Desrosiers M, Dermine JF et al. Impaired recruitment of the small GTPase rab7 correlates with the inhibition of phagosome maturation by Leishmania donovani promastigotes. Cell Microbiol 1999; 1:19–32.

    Article  PubMed  CAS  Google Scholar 

  35. Holm Å, Tejle K, Magnusson KE et al. Leishmania donovani lipophosphoglycan causes periphagosomal actin accumulation: Correlation with impaired translocation of PKCα and defective phagosome maturation. Cell Microbiol 2001; 3:439–447.

    Article  PubMed  CAS  Google Scholar 

  36. Tolson DL, Turco SJ, Pearson TW. Expression of a repeating phosphorylated disaccharide lipophosphoglycan epitope on the surface of macrophages infected with Leishmania donovani. Infect Immun 1990; 58:3500–3507.

    PubMed  CAS  Google Scholar 

  37. Miao L, Stafford A, Nir S et al. Potent inhibition of viral fusion by the lipophosphoglycan of Leishmania donovani. Biochemistry 1995; 34:4676–4683.

    Article  PubMed  CAS  Google Scholar 

  38. Dermine JF, Duclos S, Garin J et al. Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. J Biol Chem 2001; 276:18507–18512.

    Article  PubMed  CAS  Google Scholar 

  39. Dermine JF, Goyette G, Houde M et al. Leishmania donovani lipophosphoglycan disrupts phagosome microdomains in J774 macrophages. Cell Microbiol 2005; 7:1263–1270.

    Article  PubMed  CAS  Google Scholar 

  40. Vilhardt F, Van Deurs B. The phagocyte NADPH oxidase depends on cholesterol-enriched membrane microdomains for assembly. EMBO J 2004; 23:739–748.

    Article  PubMed  CAS  Google Scholar 

  41. Courret N, Frehel C, Gouhier N et al. Biogenesis of Leishmania-harbouring parasitophorous vacu-oles following phagocytosis of the metacyclic promastigote or amastigote stages of the parasites. J Cell Sci 2002; 115:2303–2316.

    PubMed  CAS  Google Scholar 

  42. Antoine JC, Prina E, Lang T et al. The biogenesis and properties of the parasitophorous vacuoles that harbour Leishmania in murine macrophages. Trends Microbiol 1998; 6:392–401.

    Article  PubMed  CAS  Google Scholar 

  43. Holm Å, Tejle K, Gunnarsson T et al. Role of protein kinase Cα for uptake of unopsonized prey and phagosomal maturation in macrophages. Biochem Biophys Res Commun 2003; 302:653–658.

    Article  PubMed  CAS  Google Scholar 

  44. Allen LH, Aderem A. A role for MARCKS, the alpha isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages. J Exp Med 1995; 182:829–840.

    Article  PubMed  CAS  Google Scholar 

  45. Allen LA, Aderem A. Protein kinase C regulates MARCKS cycling between the plasma membrane and lysosomes in fibroblasts. EMBO J 1995; 14:1109–1121.

    PubMed  CAS  Google Scholar 

  46. Scott CC, Dobson W, Botelho RJ et al. Phosphatidylinositol-4,5-bisphosphate hydrolysis directs actin remodeling during phagocytosis. J Cell Biol 2005; 169:139–149.

    Article  PubMed  CAS  Google Scholar 

  47. Gruenheid S, Finlay BB. Microbial pathogenesis and cytoskeletal function. Nature 2003; 422:775–781.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Descoteaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Lodge, R., Descoteaux, A. (2008). Leishmania Invasion and Phagosome Biogenesis. In: Burleigh, B.A., Soldati-Favre, D. (eds) Molecular Mechanisms of Parasite Invasion. Subcellular Biochemistry, vol 47. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78267-6_14

Download citation

Publish with us

Policies and ethics