Skip to main content

Design of Solution-Grown ZnO Nanostructures

  • Chapter
  • First Online:
Toward Functional Nanomaterials

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 5))

Abstract

The renewed interest of the scientific community in zinc oxide (ZnO) during the last decade has been mostly powered by the development of new low-temperature methods for the synthesis of ZnO nanostructures with a controlled morphology. The wide variety of morphology includes nanoparticles, nanowires, nanorods, nanotubes, nanosheets, as well as nanoporous films. The present chapter is a review of the most recent progresses made in the design of these structures by the use of different solution-based low-temperature preparation methods. The methods include chemical, sol-gel and hydrothermal synthesis, electrospinning, electroless deposition and electrodeposition. Special attention is paid to the preparation of organic/inorganic hybrid films, to patterning and to the doping of nanostructured ZnO layers. The interest in these nanostructures is illustrated by a large variety of applications, such as in solar cells, light emitting diodes (LED), photocatalysis and surfaces with controllable wettability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xiang B, Wang P, Zhang X, Dayeh S A, Aplin D P R, Soci C, Yu D, Wang D (2007) Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Lett. 7:323–328.

    Google Scholar 

  2. Kang H S, Kim G H, Kim D L, Chang H W, Ahn B D, Lee S Y (2006) Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film. Appl. Phys. Lett. 89:181103

    Article  CAS  Google Scholar 

  3. Sun J W, Lu Y M, Liu Y C, Shen D Z, Zhang Z Z, Li B H, Zhang J Y, Yao B, Zhao D X, Fan X W (2006) Hole transport in p-type ZnO films grown by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 89:232101.

    Article  CAS  Google Scholar 

  4. Hwang D K, Oh M S, Lim J H, Kang C H, Park S J (2007) Effect of annealing temperature and ambient gas on phosphorus doped p-type ZnO. Appl. Phys. Lett. 90:021106.

    Article  CAS  Google Scholar 

  5. Mosnier J P, Chakrabarti S, Doggett B, McGlynn E, Henry M O, Meaney A (2007). P-type nitrogen- and phosphorus-doped ZnO thin films grown by pulsed laser deposition on sapphire substrates. Proc. SPIE 6474, 64740I.

    Article  CAS  Google Scholar 

  6. Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan M A, Avrutin V, Cho S J, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98:041301_1–041301_105.

    Google Scholar 

  7. Wang Z L (2004) Nanostructures of zinc oxide. Mater. Today 7(6):26– 33.

    Article  CAS  Google Scholar 

  8. Pan Z W, Dai Z R, Wang Z L (2001) Nanobelts of semiconducting oxides. Science 291:1947–1949.

    Article  CAS  Google Scholar 

  9. Wang Z L (2004) Zinc oxide nanostructures: growth, properties and applications. J. Phys.:Condens. Matter 16:R829–R858.

    Article  CAS  Google Scholar 

  10. Heo Y W, Norton D P, Tien L C, Kwon Y, Kang B S, Ren F, Pearton S J, LaRoche J R (2004) ZnO nanowire growth and devices. Mater. Sci. Eng. R 47:1–47.

    Article  CAS  Google Scholar 

  11. Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Room-temperature ultraviolet nanowire lasers. Science 292:1897–1899.

    Article  CAS  Google Scholar 

  12. Klingshirn C, Hauschild R, Priller H, Decker M, Zeller J, Kalt H (2005) ZnO rediscovered-once again!? Superlattices Microstructures 38:209–222.

    Article  CAS  Google Scholar 

  13. Wang Q, Wang G, Xu B, Jie J, Han X, Li G, Li Q, Hou J G (2005) Non-aqueous cathodic electrodeposition of large-scale uniform ZnO nanowire arrays embedded in anodic alumina membrane. Mater. Lett. 59: 1378–1382.

    Article  CAS  Google Scholar 

  14. Pan A P, Yu R, Xie S, Zhang Z, Jin C, Zou B (2005) ZnO flowers made up of thin nanosheets and their optical properties. J. Crystal Growth 282:165–172.

    Article  CAS  Google Scholar 

  15. Ng H. T, Li J, Smith M, Nguyen P, Cassell A, Han J, Meyyappan M (2003) Growth of epitaxial nanowires at the junctions of nanowalls. Science 300:1249–1250

    Article  CAS  Google Scholar 

  16. JCPDS-ICDD Card n° 36-1451.

    Google Scholar 

  17. Vayssieres L, Keis K, Hagfeldt A, Lindquist S E (2001) Three-dimensional array of highly oriented crystalline ZnO Microtubes. Chem. Mater. 12:4395–4397.

    Article  CAS  Google Scholar 

  18. Park W I, Jun Y H, Jung S W, Yi G C (2003) Excitonic emissions observed in ZnO single crystal nanorods. Appl. Phys. Lett. 82: 964–966.

    Article  CAS  Google Scholar 

  19. Tam K H, Cheung C K, Leung Y H, Djuristic A B, Ling C C, Beling C D, Fung S, Kwok W M, Chan W K, Phillips D L, Ding L, Ge W K (2006) Defects in ZnO nanorods prepared by hydrothermal method. J. Phys. Chem. B 110:20865–20871.

    Article  CAS  Google Scholar 

  20. Lin B, Fu Z, Jia (2001) Green Luminescence in undoped zinc oxide films deposited on silicon. Appl. Phys. Lett. 79:943–945.

    Article  CAS  Google Scholar 

  21. Lima S A M, Sigoli F A, Jafelicci M, Davolos M R (2001) Luminescent properties and lattice defects correlation on zinc oxide. Int. J. Inorg. Mater. 3:749–754.

    Article  Google Scholar 

  22. Xu P S, Sun Y M, Shi C S, Xu F Q, Pan H B (2003) The electronic structure and spectral properties of ZnO and its defects. Nucl. Instr. Meth. Phys. Res. B 199:286–290.

    Article  CAS  Google Scholar 

  23. Nikitenko V (2005) Optics and spectroscopy of point defects in ZnO. In Zinc Oxide- A material for micro- and optoelectronic applications Norberg N H, Terukov E, Eds. Springer, Dordrecht, The Netherland, pp. 69–81.

    Google Scholar 

  24. Vanheusden K, Seager C H, Warren L, Tallant D R, Voigt J A (1996) Correlation between photoluminescence and oxygen vacancies in ZnO phosphor. Appl. Phys. Lett. 68:403–405.

    Article  CAS  Google Scholar 

  25. Vanheusden K, Seager C H, Warren L, Tallant D R, Voigt J A (1996) Mechanisms behind green luminescence in ZnO phosphor powders. J Appl. Phys. 79:7983–7990.

    Article  CAS  Google Scholar 

  26. Leiter F, Alves H R, Hofstaetter A, Hofmann D M, Meyer B K (2001) The oxygen vacancy as the origin of a green emission in undoped ZnO. Phys. Stat. Sol. (b) 226:R4–R5.

    CAS  Google Scholar 

  27. Leiter F, Alves H R, Pfisterer D, Romanov N G, Hofmann D M, Meyer B K (2003) Oxygen vacancies in ZnO. Physica B 340–342:201–204.

    Article  CAS  Google Scholar 

  28. Goux A, Pauporté T, Chivot J, Lincot D (2005) Temperature Effects on ZnO Electrodeposition. Electrochim. Acta, 50:2239–2248.

    Article  CAS  Google Scholar 

  29. Spanhel L, Anderson M A (1991) Semiconductor clusters in sol-gel process: quantized aggregation, gelation and crystal growth in concentrated ZnO colloids. J. Am. Chem. Soc. 113:2826–2833.

    Article  CAS  Google Scholar 

  30. Meulenkamp E A (1998) Synthesis and growth of ZnO nanoparticles. J. Phys. Chem. B 102:5566–5572.

    Article  CAS  Google Scholar 

  31. Xiao Z Y, Liu Y C, Dong L, Shao C L, Zhang J Y, Lu Y M, Zhen D Z, Fan X W (2005) The effect of surface properties on visible luminescence of nanosized colloidal ZnO membranes. J. Colloid. Interface Science 282:403–407.

    Article  CAS  Google Scholar 

  32. Peng W Q, Qu S C, Cong G W, Zhang Z G (2006) Structure and visible luminescence of ZnO nanoparticles. Mater. Sci. Semicond. Process. 9:156–159.

    Article  CAS  Google Scholar 

  33. Pesika N S, Stebe K J, Searson P C (2003) Determination of the particle size distribution of quantum nanocrystals from absorbance spectra. Adv. Mater. 15:1289–1291.

    Article  CAS  Google Scholar 

  34. Guan X H, Wang G S, Li C P, Lv Y Z, Guo L, Xu H B, Xu H B (2007) Synthesis and optical properties of ZnO multipod nanorods. J. Lumin. 122–123:770–772.

    Article  CAS  Google Scholar 

  35. Lv Y Z, Zhang Y H, Li C P, Ren L R, Guo L, Xu H B, Ding L, Yang C L, Ge W K, Yang S H (2007) Temperature-dependent photoluminescence of ZnO nanorods prepared by a simple solution route. J. Lumin. 122–123:816–818.

    Article  CAS  Google Scholar 

  36. Cheng B, Shi W, Russell-Tanner J M, Zhang L, Salmulski E T (2006) Synthesis of variable-aspect-ratio, single-crystalline ZnO. Inorg. Chem. 45:1208–1214.

    Article  CAS  Google Scholar 

  37. Sekiguchi T, Miyashita S, Obara K, Shishido K, Sakagami N (2000) Hydrothermal growth of ZnO single crystals and their optical characterization. J. Crystal Growth 214–215:72–76.

    Article  Google Scholar 

  38. Mass J, Avella M, Jimenez J, Callahan M, Grant E, Rakes K, Bliss D, Wang B (2005) Cathodoluminescence characterization of hydrothermal ZnO crystals. Superlattices Microstructures. 38:223–230.

    Article  CAS  Google Scholar 

  39. Yoneta M, Yoshino K, Ohishi M, Saito H (2006) Photoluminescence studies of high-quality ZnO single crystals by hydrothermal method. Physica B 376–377:745–748.

    Article  CAS  Google Scholar 

  40. Wang J, Gao L (2004) Synthesis of uniform rod-like, multipod-like ZnO whiskers and their photoluminescence properties. J. Crystal Growth 262:290–294.

    Article  CAS  Google Scholar 

  41. Li W J, Shi E W, Zhong W Z, Yin Z W (1999) Growth mechanism and habit of oxide crystals. J. Crystal Growth 203:186–196.

    Article  CAS  Google Scholar 

  42. Masuda Y, Kinoshita N, Sato F, Koumoto K (2006) Site selective deposition and morphology control of UV- and visible-light-Emitting ZnO crystals. Crystal Growth Design 6:75–78.

    Article  CAS  Google Scholar 

  43. Wang J, Gao L (2003) Wet chemical synthesis of ultralong and straight single-crystalline ZnO nanowires and their excellent UV emission properties. J. Mater. Chem. 13:2551–2554.

    Article  CAS  Google Scholar 

  44. Zou G., Yu D, Wang D, Zhang W, Xy L, Yu W, Qian Y (2004) Controlled synthesis of ZnO nanocrystals with column-, rosette- and fiber-like morphologies and their photoluminescence properties. Mater. Chem. Phys. 88:150–154.

    Article  CAS  Google Scholar 

  45. Fan L, Song H, Li T, Yu L, Liu Z, Pan G, Lei Y, Bai X, Wang T, Zheng Z, Kong X (2007) Hydrothermal synthesis and photoluminescent properties of ZnO nanorods. J. Lumin. 122–123:819–821.

    Article  CAS  Google Scholar 

  46. Kuo C L, Kuo T K, Huang M H (2005) Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures. J. Phys. Chem. B 109:20115–20121.

    Article  CAS  Google Scholar 

  47. Xie R, Li D, Zhang H, Yang D, Jiang M, Sekiguchi T, Liu B, Bando Y (2006) Low-temperature growth of uniform ZnO particles with controllable ellipsoidal morphologies and characteristic luminescence patterns. J. Phys. Chem. B 110:19147–19153.

    Article  CAS  Google Scholar 

  48. Pal U, Santiago P (2005) Controlling the morphology of ZnO nanostructures in low-temperature hydrothermal process. J. Phys. Chem. B 109:15317–15321.

    Article  CAS  Google Scholar 

  49. Govender K, Boyle D S, Kenway P B, O’Brien P (2004) Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem. 14:2575–2591.

    Article  CAS  Google Scholar 

  50. Yamabi S, Imai H (2002) Growth conditions for wurtzite zinc oxide films in aqueous solutions. J. Mater. Chem. 12:3773–3778.

    Article  CAS  Google Scholar 

  51. Duan J, Huang X, Wang E (2006) PEG-assisted synthesis of ZnO nanotubes. Mater. Lett. 60:1918–1921.

    Article  CAS  Google Scholar 

  52. Quang L H, Chua S J, Loh K P, Fitzgerald E (2006) The effect of post annealing treatment on photoluminescence of ZnO nanorods prepared by hydrothermal synthesis. J. Crystal Growth 287:157–161.

    Article  CAS  Google Scholar 

  53. O’Brien P, Saeed T, Knowles J (1996) Speciation and the nature of ZnO thin films from chemical bath deposition. J. Mater. Chem. 6:1135–1139.

    Article  Google Scholar 

  54. Izaki M, Omi T (1997) Transparent zinc oxide films chemically prepared from aqueous solution. J. Electrochem. Soc. 144:L3–L5.

    Article  CAS  Google Scholar 

  55. Izaki M, Omi T (2000) Characterization of boron-incorporated zinc oxide film chemically prepared from aqueous solution. J. Electrochem. Soc. 147:210–213.

    Article  CAS  Google Scholar 

  56. Saito N, Haneda H, Sekiguchi T, Ohashi N, Sakaguchi I, Koumoto K (2002) Low-temperature fabrication of light emitting zinc oxide micropatterns using self assembled monolayers. Adv. Mater. 14:418–421.

    Article  CAS  Google Scholar 

  57. Saito N, Haneda H, Koumoto K (2004) Pattern-deposition of light-emitting ZnO particulate film through biomimetic process using self assembled monolayer template. Microelectronics J 35:349–352.

    Article  CAS  Google Scholar 

  58. Vayssieres L, Keis K, Lindquist S E, Hagfeldt A (2001) Purpose-built anisotropic metal oxide materials: 3D highly oriented microrod array of ZnO. J. Phys. Chem. B 105: 3350–3352.

    Article  CAS  Google Scholar 

  59. Vayssieres L (2003) Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15:464–466.

    Article  CAS  Google Scholar 

  60. Boyle D S, Govender K, O’Brien P (2002) Novel low temperature solution deposition of perpendicularly oriented rods of ZnO: substrate effects and evidence of the importance of counter-ions in the control of crystallite growth. Chem. Commun. 80–81.

    Google Scholar 

  61. Tian Z R, Voigt J A, Liu J, Mckenzie B, Mcdermott M J, Rodriguez M A, Konishi H, Xu H (2003) Complex and oriented ZnO nanostructures. Nature Mater. 2:821–826.

    Article  CAS  Google Scholar 

  62. Djuristic A B, Kwok W M, Leung Y H, Phillips D L, Chan W K (2005) Stimulated emission in ZnO nanostructures: a time resolved study. J. Phys. Chem. B 109:19228–19233.

    Article  CAS  Google Scholar 

  63. Hsu J W P, Tian Z R, Simmons N C, Matzke C M, Voigt J A, Liu J (2005) Directed spatial organization of zinc oxide nanorods. Nano Lett. 5:83–86.

    Article  CAS  Google Scholar 

  64. Govender K, Boyle D S, O’Brien P, Binks D, West D, Coleman D (2002) Room-temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition. Adv. Mater. 14:1221–1224.

    Article  CAS  Google Scholar 

  65. Choy J H, Jang E S, Won J H, Chung J H, Jang D J, Kim Y W (2003) Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser. Adv. Mater. 15:1911–1914.

    Article  CAS  Google Scholar 

  66. Ito K, Nakamura K (2006) Preparation of ZnO thin films using the flowing liquid film method. Thin Solid Film 286:35–36.

    Article  Google Scholar 

  67. Qiu Z, Wong K S, Wu M W, Lin W, Xu H (2004) Microcavity lasing behaviour of oriented hexagonal nanowhiskers grown by hydrothermal oxidation. Appl. Phys. Lett. 84: 2739–2741.

    Article  CAS  Google Scholar 

  68. Pan A L, Liu R B, Wang S Q, Wu Z Y, Cao L, Xie S S, Zou B S (2005) Controllable growth and optical properties of large scale ZnO arrays. J. Crystal Growth 282:125–130.

    Article  CAS  Google Scholar 

  69. Dem’yanets L N, Li L E, Uvarova T G (2006) Hydrothermal synthesis and cathodoluminescence of ZnO crystalline powders and coatings. J. Crystal Growth 287:23–27.

    Article  CAS  Google Scholar 

  70. Chen Y, Bagnall D M, Koh H J, Park K T, Hiraga K, Zhu Z, Yao T (1998) Plasma assisted molecular beam epitaxy of ZnO on c-plane of sapphire: growth and characterization. J. Appl. Phys. 84:3912–3918.

    Article  CAS  Google Scholar 

  71. Peulon S, Lincot D (1996) Cathodic electrodeposition from aqueous solution of dense or open structured zinc oxide films. Adv. Mater. 8:166–170.

    Article  CAS  Google Scholar 

  72. Peulon S, Lincot D (1998) Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions. J. Electrochem. Soc. 145:864–874.

    Article  CAS  Google Scholar 

  73. Pauporté T, Lincot D (1999) Heteroepitaxial electrodeposition of zinc oxide on gallium nitride. Appl. Phys. Lett. 75:3817–3819.

    Article  Google Scholar 

  74. Pauporté T, Lincot D (2000) Electrodeposition of semiconductors for optoelectronic devices: results on zinc oxide. Electrochim. Acta 45:3345–3353.

    Article  Google Scholar 

  75. Pauporté T, Lincot D (2001) Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition. II- Mechanistic aspects. J. Electroanal. Chem. 517:54–62.

    Article  Google Scholar 

  76. Goux A, Pauporté T, Lincot D (2006) Oxygen Reduction on Zinc Oxide Electrodes in KCl Aqueous solution at 70°C. Electrochim. Acta. 51:3168–3172.

    Article  CAS  Google Scholar 

  77. Gal D, Hodes G, Lincot D, Schock H W (2000) Electrochemical deposition of zinc oxide films from non-aqueous solution: a new buffer/window process for thin film solar cells. Thin Solid Films 361–362:79–83.

    Article  Google Scholar 

  78. Pauporté T., Lincot D, Viana B, Pellé F (2006) Toward laser emission of epitaxial nanorod array of ZnO grown by electrodeposition. Appl. Phys. Lett. 89:233112.

    Article  CAS  Google Scholar 

  79. Pauporté T, Cortès R, Froment M, Beaumont B, Lincot D (2002) Electrocrystallization of epitaxial zinc oxide onto galium nitride. Chem. Mater. 14:4702–4708.

    Article  CAS  Google Scholar 

  80. Pauporté T, Yoshida T, Cortès R, Froment M, Lincot D (2003) Electrochemical growth of epitaxial Eosin/ZnO hybrid films. J. Phys. Chem. B 107:10077–10082.

    Article  CAS  Google Scholar 

  81. Liu R, Vertegel A A, Bohannan E W, Sorenson T A, Switzer J A (2001) Epitaxial electrodeposition of Zinc oxide nanopillars on single-crystal gold. Chem. Mater. 13:508–512.

    Article  CAS  Google Scholar 

  82. Vispute R D, Talyansky V, Choopun S. Sharma R P, Venkatesan T, He M, Tang X, Halpern J B, Spencer M G, Li Y X, Salamanca-Riba L G, Iliadis A A, Jones K A (1998). Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Appl. Phys. Lett. 73:348–350.

    Article  CAS  Google Scholar 

  83. Pauporté T, Lincot D (2001) Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition. I-Deposition in perchlorate medium. J. Electrochem. Soc. 148:C310–C314.

    Article  Google Scholar 

  84. Leprince-Wang Y, Yacoubi-Ouslim A, Wang G Y (2005) Structure study of electrodeposited ZnO nanowires. Microelectronics J. 36:625–628.

    Article  CAS  Google Scholar 

  85. Lai M, Riley J (2006) Templated electrosynthesis of Zinc oxide nanorods. Chem. Mater. 18:2233–2237.

    Article  CAS  Google Scholar 

  86. Pauporté T, Yoshida T, Goux A, Lincot D (2002). One-step electrodeposition of ZnO/Eosin hybrid films from hydrogen peroxide oxygen precursor. J. Electroanal. Chem, 534:55–64.

    Article  Google Scholar 

  87. Izaki M, Omi T (1996) Electrolyte optimization for cathodic growth of zinc oxide films. J. Electrochem. Soc. 143:L53–L55.

    Article  CAS  Google Scholar 

  88. Izaki M, Omi T (1996) Transparent zinc oxide films prepared by electrochemical reaction. Appl. Phys. Lett. 68:2439–2440.

    Article  CAS  Google Scholar 

  89. Izaki M, Omi T (1997) Characterization of transparent zinc oxide films prepared by electrochemical reaction. J. Electrochem. Soc. 144:1949–1952.

    Article  CAS  Google Scholar 

  90. Yoshida T, Komatsu D, Shimokawa N, Minoura H (2004) Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths. Thin Solid Films 451–452:166–169.

    Article  CAS  Google Scholar 

  91. Ishizaki H, Izaki M, Ito T (2001) Influence of (CH3)2NHBH3 concentration on electrical properties of electrochemically grown ZnO film. J. Electrochem. Soc. 148:C540–C543.

    Google Scholar 

  92. Ishizaki H, Imaizumi M, Matsuda S, Izaki M, Ito T (2002) Incorporation of boron in ZnO film from an aqueous solution containing zinc nitrate and dimethylamine-borane by electrochemical reaction. Thin Solid Films 411:65–68.

    Article  CAS  Google Scholar 

  93. Zheng M J, Zhang L D, Li G H, Shen W Z (2002) Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem. Phys. Lett. 363:123–128.

    Article  CAS  Google Scholar 

  94. Izaki M, Watase S, Takahashi H (2003) Low-temperature electrodeposition of room temperature ultraviolet-light-emitting zinc oxide. Adv. Mater. 15:2000–2002.

    Article  CAS  Google Scholar 

  95. Izaki M, Watase S, Takahashi H (2003) Room-temperature ultraviolet light-emitting zinc oxide micropatterns prepared by low-temperature electrodeposition and photoresist. Appl. Phys. Lett. 83:4930–4932.

    Article  CAS  Google Scholar 

  96. Wang Q, Wang G, Jie J, Han X, Xu B, Hou J G (2005) Annealing effect on optical properties of ZnO films fabricated by cathodic electrodeposition. Thin Solid Films 492:61–65.

    Article  CAS  Google Scholar 

  97. Zhang L, Chen Z, Tang Y, Jia Z (2005) Low temperature cathodic electrodeposition of nanocrystalline zinc oxide thin films. Thin Solid Films 492:24–29.

    Article  CAS  Google Scholar 

  98. Cao B, Teng X, Heo S H, Li Y, Cho S O, Li G, Cai W (2007) Different ZnO nanostructures fabricated by seed layer assisted electrochemical route and their photoluminescence and field emission properties. J. Phys. Chem C 111:2470–2476.

    Article  CAS  Google Scholar 

  99. Chen Z, Tang Y, Zhang L, Luo L (2006) Electrodeposited nanoporous ZnO films exhibiting enhanced performance in dye sensitized solar cells. Electrochim. Acta 51:5870–5875.

    Article  CAS  Google Scholar 

  100. Chen Q P, Xue M Z, Sheng Q R, Liu Y G, Ma Z F (2006) Electrochemical growth of nanopillar zinc oxide film by applying a low concentration of zinc nitrate precursor. Electrochem. Solid-State Lett. 9:C58–C61.

    Article  CAS  Google Scholar 

  101. Könenkamp R, Boedecker K, Lux-Streiner M C, Poschenrieder M, Zenia F, Lévy-Clément C, Wagner S (2000) Thin film semiconductor deposition on free-standing ZnO columns. Appl. Phys. Lett. 77:2575–2577.

    Article  Google Scholar 

  102. Lévy-Clément C, Katty A, Bastide S, Zenia F, Mora I, Munoz-Sanjose V (2002). A new CdTe/ZnO columnar composite film for Eta-solar cells. Physica E 14:229–232.

    Article  Google Scholar 

  103. Tena-Zaera R, Katty A, Bastide S, Lévy-Clément C, O’Regan B, Munoz-Sanjosé (2005) ZnO/CdTe/CuSCN, a promising heterostructure to act as inorganic eta-solar cell. Thin Solid Films 483:372–377.

    Article  CAS  Google Scholar 

  104. Lévy-Clément C, Tena-Zaera R, Ryan M A, Hodes G (2005) CdSe-sensitized p-CuSCN/Nanowire n-ZnO heterojunction. Adv. Mater. 17:1512–1515.

    Article  CAS  Google Scholar 

  105. O’Regan B, Lenzmann F, Muis R, Wienke J (2002) A solid-state dye-sensitized solar cell fabricated with pressure-treated P25-TiO2 and CuSCN: analysis of pore filling and I-V characteristics. Chem. Mater. 14:5023–5029.

    Article  CAS  Google Scholar 

  106. Tena-Zaera R, Ryan MA, Katty A, Hodes G, Bastide S, Lévy-Clément C (2006) Fabrication and characterization of ZnO nanowires/CdSe/CuSCN eta-solar cell. C. R. Chimie 9: 717–729.

    Article  CAS  Google Scholar 

  107. Könenkamp R, Word R C, Schlegel C (2004) Vertical nanowire light-emitting diode. Appl. Phys. Lett. 85:6004–6006.

    Article  CAS  Google Scholar 

  108. Könenkamp R, Word R C, Godinez M (2005) Ultraviolet electroluminescence from ZnO/polymer heterojunction light emitting diodes. Nano Lett. 5:2005–2008.

    Article  CAS  Google Scholar 

  109. Lévy-Clément C, Elias J, Tena-Zaera R (2007) Electrodeposition of arrays of ZnO nanostructures and application to photoelectrochemical devices. SPIE Proceedings 6340:63400R1–63400R12.

    Google Scholar 

  110. Badre C, Pauporté T, Turmine M, Lincot D (2007) ZnO nanowire array film with super water-repellent properties. Nanotechnology 18:365705.

    Google Scholar 

  111. O’Regan B, Sklover V, Grätzel M (2001) Electrochemical deposition of smooth and homogeneously mesoporous ZnO films from propylene carbonate electrolytes. J. Electrochem. Soc. 148:C498–C505.

    Article  Google Scholar 

  112. O’Regan B, Schwartz D T, Zakeeruddin S M, Grätzel M (2000) Electrodeposited nanocomposite n-p heterojunctions for solid-state dye-sensitized photovoltaics. Adv. Mater. 12:1263–1267.

    Google Scholar 

  113. Yoshida T, Pauporté T, Lincot D, Oekermann T, Minoura H (2003) Cathodic electrodeposition of ZnO/eosin Y hybrid thin films from oxygen-saturated aqueous solution of ZnCl2 and eosin Y. J. Electrochem. Soc. 150:C608–C615.

    Article  CAS  Google Scholar 

  114. Yoshida T, Iwaya M, Ando H, Oekermann T, Nonomura K, Schlettwein D, Wöhrle D, Minoura H (2004) Improved photoelectrochemical performance of electrodeposited ZnO/Eosin Y hybrid thin films by dye re-adsorption. Chem. Commun 400–401.

    Google Scholar 

  115. O’Regan B, Grätzel M (1991) A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740.

    Article  Google Scholar 

  116. Rathousky J, Pauporté T (2007) Electrodeposited mesoporous ZnO thin films as efficient photocatalysts for the degradation of dye pollutants. J. Phys. Chem. C 111:7639--7644.

    Google Scholar 

  117. Pauporté T, Yoshida T, Komatsu D, Minoura H (2006) Highly porous electrodeposited zinc oxide films for red/green luminescence. Electrochem. Solid-State Lett. 9:H16–H18.

    Article  CAS  Google Scholar 

  118. Pauporté T, Yoshida T (2006) Conducting hybrid layers of ZnO/lanthanide complexes with high visible luminescence. J. Mater. Chem. 16:4529–4534

    Article  CAS  Google Scholar 

  119. Goux A, Pauporté T, Yoshida T, Lincot D (2006) Mechanistic study of the electrodeposition of nanoporous self-assembled ZnO/Eosin Y hybrid thin films. Effect of eosin concentration. Langmuir 22:10545–10553.

    CAS  Google Scholar 

  120. Yoshida T, Minoura H, Zhang J, Komatsu D, Sawatani S, Pauporté T, Lincot D, Oekermann T, Schlettwein D (2009) Electrodeposition of inorganic/organic hybrid thin films. Adv. Funct. Mater. 19:17--43.

    Google Scholar 

  121. Goux A, Pauporté T, Lincot D, Dunsch L (2007) In situ ESR and UV-visible spectroelectrochemical study of eosin Y upon reduction with and without Zn (II) ions. Chem. Phys. Chem. 8:926--931, DOI: 10.1002/cphc.200700009.

    Google Scholar 

  122. Aarão Reis F D A, Badiali J P, Pauporté T, Lincot D (2006). Statistical modelling of the electrodeposition of nanostructured hybrid films with ZnO- eosin Y as a case example. J. Electroanal. Chem. 598:27–35.

    Article  CAS  Google Scholar 

  123. Pauporté T, Bedioui F, Lincot D (2005) Nanostructured zinc oxide- chromophore hybrid films with multicolored electrochromic properties. J. Mater. Chem. 15:1552–1559.

    Article  CAS  Google Scholar 

  124. Pauporté T (2007) Highly transparent ZnO/Polyvinyl alcohol hybrid films with controlled crystallographic orientation growth. Crystal Growth Design 7:2310--2315.

    Google Scholar 

  125. Yang X, Shao C, Guan H, Li X, Gong J (2004) Preparation and characterisation of ZnO nanofibers by using electrospun PVA/zinc acetate composite fiber precursor. Inorg. Chem. Commun. 7:176–178.

    Article  CAS  Google Scholar 

  126. Hong Y, Li D, Zheng J, Zou G (2006) In situ growth of ZnO nanocrystals from solid electrospun nanofiber matrixes. Langmuir 22:7331–7334.

    Article  CAS  Google Scholar 

  127. Sui X M, Shao C L, Liu Y C (2005) White-light emission of polyvinyl alcohol/ ZnO hybrid nanofibers prepared by electrospinning. Appl. Phys. Lett. 87:113115.

    Article  CAS  Google Scholar 

  128. He Y, Sang W, Wang J, Wu R, Min J (2005) Vertically well-aligned ZnO nanowires generated with self-assembling polymers. Mater. Chem. Phys. 94:29-33.

    Article  CAS  Google Scholar 

  129. Lima S A M, Sigoli F A, Davolos M R, Jafelicci M (2002) Europium(III)-containing zinc oxide from pichini method. J. Alloys Comp. 344:280–284.

    Article  Google Scholar 

  130. Lima S A M, Sigoli F A S, Davolos M R (2003) Pechini’s solution precursor for Eu(III) –containing ZnO films. J. Solid State Chem. 171:287–290.

    Article  CAS  Google Scholar 

  131. Gao S, Zhang H, Deng R, Wang X, Sun D, Zheng G (2006) Engineering white light-emitting Eu-doped ZnO urchins by biopolymer-assisted hydrothermal method. Appl. Phys. Lett. 89:123125.

    Article  CAS  Google Scholar 

  132. Pauporté T, Goux A, Kahn-Harari A, de Tacconi N, Rajeshwar K, Lincot D (2003) Cathodic electrodeposition of mixed oxide thin films. J. Phys. Chem. Solids 64:1737–1742.

    Article  CAS  Google Scholar 

  133. Goux A, Pauporté T, Lincot D (2006) Deposition of mixed zinc oxide/ lanthanide films by electrochemical precipitation. The ZnO/Er system. J. Electroanal. Chem. 587:193–202.

    Article  CAS  Google Scholar 

  134. Goux A, Pauporté T, Lincot D (2007) Preparation of ZnO/Eu mixed films by electrochemical precipitation. Electrochim. 53:233--244.

    Google Scholar 

  135. Pauporté T, Pellé F, Viana B, Aschehoug P (2007) Luminescence of nanostructured ZnO/Eu mixed films prepared by electrodeposition. J. Phys. Chem. C 111:15427--15432.

    Google Scholar 

  136. Horrocks W D, Sudnick D R (1979) Lanthanide ion probes of structure in Biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules. J. Am. Chem. Soc. 101:334–340.

    Article  CAS  Google Scholar 

  137. Lis S (2002) Luminescence spectroscopy of lanthanide(III) ions in solution. J. Alloys Compd. 341:45–50.

    Article  CAS  Google Scholar 

  138. Xiang J H, ZhuP X, Masuda Y, Okuya M, Kaneko S, Koumoto K (2006) Flexible solar-cell from zinc oxide nanocrystalline sheets self-assembled by an in-situ electrodeposition process. J. Nanosci. Nanotechnol. 6:1797–1801.

    Article  CAS  Google Scholar 

  139. Cao B Q, Cai W P, Zeng H B, Duan G T (2006) Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates. J. Appl. Phys. 99:073516_145–073516_150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Pauporté .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pauporté, T. (2009). Design of Solution-Grown ZnO Nanostructures. In: Wang, Z. (eds) Toward Functional Nanomaterials. Lecture Notes in Nanoscale Science and Technology, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77717-7_2

Download citation

Publish with us

Policies and ethics