Skip to main content

Abstract

Proteins of the heterogeneous nuclear ribonucleoparticles (hnRNP) family form a structurally diverse group of RNA binding proteins implicated in various functions in metazoans. Here we discuss recent advances supporting a role for these proteins in precursor-messenger RNA (pre-mRNA) splicing. Heterogeneous nuclear RNP proteins can repress splicing by directly antagonizing the recognition of splice sites, or can interfere with the binding of proteins bound to enhancers. Recently, hnRNP proteins have been shown to hinder communication between factors bound to different splice sites. Conversely, several reports have described a positive role for some hnRNP proteins in pre-mRNA splicing. Moreover, cooperative interactions between bound hnRNP proteins may encourage splicing between specific pairs of splice sites while simultaneously hampering other combinations. Thus, hnRNP proteins utilize a variety of strategies to control splice site selection in a manner that is important for both alternative and constitutive pre-mRNA splicing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnson JM, Castle J, Garrett-Engele P et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 2003; 302(5653):2141–2144.

    Article  CAS  PubMed  Google Scholar 

  2. Lipscombe D. Neuronal proteins custom designed by alternative splicing. Curr Opin Neurobiol. 2005;15(3):358–363.

    Article  CAS  PubMed  Google Scholar 

  3. Garcia-Blanco MA, Baraniak AP, Lasda EL. Alternative splicing in disease and therapy. Nat Biotechnol. 2004;22(5):535–546.

    Article  CAS  PubMed  Google Scholar 

  4. Pagani F, Baralle FE. Genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet. 2004;5(5):389–396.

    Article  CAS  PubMed  Google Scholar 

  5. Li HR, Wang-Rodriguez J, Nair TM et al. Two-dimensional transcriptome profiling: identification of messenger RNA isoform signatures in prostate cancer from archived paraffin-embedded cancer specimens. Cancer Res 2006;66(8):4079–4088.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang C, Li HR, Fan JB et al. Profiling alternatively spliced mRNA isoforms for prostate cancer classification. BMC Bioinformatics 2006;7:202.

    Article  PubMed  CAS  Google Scholar 

  7. Will CL, Luhrmann R. Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol. Opin Cell Biol. 2001;13(3):290–301.

    Article  CAS  Google Scholar 

  8. Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annual Rev. Biochem. 2003;72:291–336.

    Article  CAS  Google Scholar 

  9. Lavigueur A, La Branche H, Kornblihtt AR et al. A splicing enhancer in the human fibronectin alternate EDI exon interacts with SR proteins and stimulates U2 snRNP binding. Genes Dev 1993;7(12A):2405–2417.

    Article  CAS  PubMed  Google Scholar 

  10. Wang Z, Hoffmann HM, Grabowski PJ. Intrinsic U2AF binding is modulated by exon enhancer signals in parallel with changes in splicing activity. RNA 1995;1(1):21–35.

    CAS  PubMed  Google Scholar 

  11. Graveley BR, Hertel KJ, Maniatis T. The role of U2AF35 and U2AF65 in enhancer-dependent splicing. RNA 2001;7(6):806–818.

    Article  CAS  PubMed  Google Scholar 

  12. Kohtz JD, Jamison SF, Will CL et al. Protein-protein interactions and 5′-splice-site recognition in mammalian mRNA precursors. Nature 1994;368(6467):119–124.

    Article  CAS  PubMed  Google Scholar 

  13. Zuo P, Maniatis T. The splicing factor U2AF35 mediates critical protein-protein interactions in constitutive and enhancer-dependent splicing. Genes Dev 1996;10(11):1356–1368.

    Article  CAS  PubMed  Google Scholar 

  14. Dreyfuss G, Matunis MJ, Pinol-Roma S, Burd CG. hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem. 1993;62:289–321.

    Article  CAS  PubMed  Google Scholar 

  15. Kiledjian M, Burd CG, Görlach M et al. Structure and function of hnRNP proteins. In: Mattaj KNaI, ed. RNA-protein interactions: Frontiers in Molecular Biology. Oxford: Oxford University Press; 1994:127–149.

    Google Scholar 

  16. Pinol-Roma S, Choi YD, Matunis MJ et al. Immunopurification of heterogeneous nuclear ribonucleoprotein particles reveals an assortment of RNA-binding proteins. Genes Dev 1988;2(2):215–227.

    Article  CAS  PubMed  Google Scholar 

  17. Matunis EL, Matunis MJ, Dreyfuss G. Characterization of the major hnRNP proteins from Drosophila melanogaster. J Cell Biol 1992;116(2):257–269.

    Article  CAS  PubMed  Google Scholar 

  18. Matunis MJ, Matunis EL, Dreyfuss G. Isolation of hnRNP complexes from Drosophila melanogaster. J Cell Biol 1992;116(2):245–255.

    Article  CAS  PubMed  Google Scholar 

  19. Raychaudhuri G, Haynes SR, Beyer AL. Heterogeneous nuclear ribonucleoprotein complexes and proteins in Drosophila melanogaster. Mol Cell Biol 1992;12(2):847–855.

    CAS  PubMed  Google Scholar 

  20. Choi YD, Dreyfuss G. Isolation of the heterogeneous nuclear RNA-ribonucleoprotein complex (hnRNP): a unique supramolecular assembly. Proc Natl Acad Sci USA 1984;81(23):7471–7475.

    Article  CAS  PubMed  Google Scholar 

  21. Matunis EL, Matunis MJ, Dreyfuss G. Association of individual hnRNP proteins and snRNPs with nascent transcripts. J Cell Biol 1993;121(2);219–228.

    Article  CAS  PubMed  Google Scholar 

  22. Wurtz T, Kiseleva E, Nacheva G et al. Identification of two RNA-binding proteins in Balbiani ring pre-messenger ribonucleoprotein granules and presence of these proteins in specific subsets of heterogeneous nuclear ribonucleoprotein particles. Mol Cell Biol 1996;16(4):1425–1435.

    CAS  Google Scholar 

  23. Bennett M, Pinol-Roma S, Staknis D et al. Differential binding of heterogeneous nuclear ribonuclcoproteins to mRNA precursors prior to spliceosome assembly in vitro. Mol Cell Biol 1992;12(7):3165–3175.

    CAS  PubMed  Google Scholar 

  24. Michaud S, Reed R. An ATP-independent complex commits pre-mRNA to the mammalian spliceosome assembly pathway. Genes Dev 1991: 5(12B):2534–2546.

    Article  CAS  PubMed  Google Scholar 

  25. Mayeda A, Helfman DM, Krainer AR. Modulation of exon skipping and inclusion by heterogeneous nuclear ribonucleoprotein Al and prc-mRNA splicing factor SF2/ASE Mol Cell Biol 1993;13(5):2993–3001.

    CAS  PubMed  Google Scholar 

  26. Kreeic AM, Swanson MS. hnRNP complexes: composition, structure, and function. Curr Opin Cell BioL 1999;11(3):363–371.

    Article  Google Scholar 

  27. Mayeda A, Krainer AR. Regulation of alternative pre-mRNA splicing by hnRNP Al and splicing factor SF2. Cell 1992;68(2):365–375.

    Article  CAS  PubMed  Google Scholar 

  28. Caceres JF, Stamm S, Helfman DM et al. Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science 1994;265(5179):1706–1709.

    Article  CAS  PubMed  Google Scholar 

  29. Yang X, Bani MR, La SJ et al. The A1 and A1B proteins of heterogeneous nuclear ribonucleoparticles modulate 5′ splice site selection in vivo. Proc Natl Acad Sci USA 1994;91(15):6924–6928.

    Article  CAS  PubMed  Google Scholar 

  30. Del Gatto-Konczak F, Olive M, Gcsnel MC et al hnRNP A1 recruited to an exon in vivo can function as an exon splicing silencer. Mol Cell Biol 1999;19(1):251–260.

    PubMed  Google Scholar 

  31. Caputi M, Mayeda A, Kraincr AR et al. hnRNP A/B proteins are required for inhibition of HIV-1 pre-mRNA splicing. EMBO J 1999;18(14):4060–4067.

    Article  CAS  PubMed  Google Scholar 

  32. Bilodeau PS, Domsic JK, Mayeda A et al. RNA splicing at human immunodeficiency virus type 1 3′ splice site A2 is regulated by binding of hnRNP A/B proteins to an exonic splicing silencer element. J Virol 2001;75(18):8487–8497.

    Article  CAS  PubMed  Google Scholar 

  33. Tange TO, Damgaard CK, Guth S et al. The hnRNP A1 protein regulates HIV-1 tat splicing via a novel intron silencer element. EMBO J 2001;20(20):5748–5758.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu J, Mayeda A, Krainer AR. Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins. Mol Cell 2001;8(6):1351–1361.

    Article  CAS  PubMed  Google Scholar 

  35. Matter N, Marx M, Weg-Remers S et al. Heterogeneous ribonucleoprotein A1 is part of an exon-specific splice-silencing complex controlled by oncogenic signaling pathways. J Biol Chem 2000;275(45):35353–35360.

    Article  CAS  PubMed  Google Scholar 

  36. Rooke N, Markovtsov V, Cagavi E et al. Roles for SR proteins and hnRNP A1 in the regulation of c-src exon NI. Mol Cell Biol 2003;23(6):1874–1884.

    Article  CAS  PubMed  Google Scholar 

  37. Hau VC, Lersch R, Gee SL et al. Decrease in hnRNP A/B expression during erythropoiesis mediates a pre-mRNA splicing switch. EMBO J 2002;21(22):6195–6204.

    Article  Google Scholar 

  38. Venables JP, Bourgeois CF, Dalgliesh C et al. Up-regulation of the ubiquitous alternative splicing factor Tra2beta causes inclusion of a germ cell-specific exon. Hum Mol Genet 2005:14(16):2289–2303.

    Article  CAS  PubMed  Google Scholar 

  39. Pollard AJ, Krainer AR, Robson SC et al. Alternative splicing of the adenylyl cyclasc stimulatory G-protein G alpha(s) is regulated by SF2/ASF and heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) and involves the use of an unusual TG 3′-splice Site. J Biol Chem 2002;277(18):15241–15251.

    Article  CAS  PubMed  Google Scholar 

  40. Arikan MC, Memmott J, Broderick JA et al. Modulation of the membrane-binding projection domain of tau protein: splicing regulation of exon 3. Brain Res Mol Brain Res 2002;101(1–2):109–121.

    Article  CAS  PubMed  Google Scholar 

  41. Expert-Besancon A, Sureau A, Durosay P et al. hnRNP Al and the SR proteins ASF/SF2 and SC35 have antagonistic functions in splicing of beta-tropomyosin exon 6B. J Biol Chem 2004;279(37):38249–38259.

    Article  CAS  Google Scholar 

  42. Guil S, Gattoni R, Carrascal M et al. Roles of hnRNP A1, SR proteins and p68 helicase in c-H-ras alternative splicing regulation. Mol Cell Biol 2003;23(8):5927–5941.

    Article  CAS  Google Scholar 

  43. Zhao X, Rush M, Schwartz S. Identification of an hnRNP A1-dependent splicing silencer in the human papillomavirus type 16 L1 coding region that prevents premature expression of the late L1 gene. J Virol 2004;78(20):10888–10901

    Article  CAS  PubMed  Google Scholar 

  44. Princler GL, Julias JG, Hughes SH et al. Roles of viral and cellular proteins in the expression of alternatively spliced HTLV-1 pX mRNAs. Virology 2003;317(1):136–145.

    Article  CAS  PubMed  Google Scholar 

  45. Kress E, Baydoun HH, Bex F et al. Critical role of hnRNP Al in HTLV-1 replication in human transformed T-lymphocytes. Retrovirology 2005;2(1):8.

    Article  PubMed  CAS  Google Scholar 

  46. Disset A, Bourgeois CF, Benmalek N et al. An exon skipping-associated nonsense mutation in the dystrophin gene uncovers a complex interplay between multiple antagonistic splicing elements. Hum Mol Genet 2006;15(6):999–1013.

    Article  CAS  PubMed  Google Scholar 

  47. Mayeda A, Munroe SH, Caceres JF et al. Function of conserved domains of hnRNP A1 and other hnRNP A/B proteins. EMBO J 1994;13(22):5483–5495.

    CAS  PubMed  Google Scholar 

  48. Hutchison S, LeBel C, Blanchette M et al. Distinct sets of adjacent heterogeneous nuclear ribonucleoprotein (hnRNP) A1/A2 binding sites control 5′ splice site selection in the hnRNP Al mRNA precursor. J Biol Chem 2002;277(33):29745–29752.

    Article  CAS  PubMed  Google Scholar 

  49. Chen CD, Kobayashi R, Helfman DM. Binding of hnRNP H to an exonic splicing silencer is involved in the regulation of alternative splicing of the rat beta-tropomyosin gene. Genes Dev 1999;13(5):593–606.

    Article  CAS  PubMed  Google Scholar 

  50. Fogel BL, McNally MT. A cellular protein, hnRNP H, binds to the negative regulator of splicing dement from Rous sarcoma virus. J Biol Chem 2000;275(41):32371–32378.

    Article  CAS  PubMed  Google Scholar 

  51. Jacquenet S, Mereau A, Bilodeau PS et al. A second exon splicing silencer within human immunodeficiency virus type 1 tat exon 2 represses splicing of Tat mRNA and binds protein hnRNP H. J Biol Chem 2001;276(44):40464–40475.

    Article  CAS  PubMed  Google Scholar 

  52. Han K, Yeo G, An P et al. A combinatorial code for splicing silencing: UAGG and GGGG motifs. PLoS Biol 2005;3(5):e158.

    Article  PubMed  CAS  Google Scholar 

  53. Pagani F, Buratti E, Stuani C et al. Missensc. nonsense and neutral mutations define juxtaposed regulatory elements of splicing in cystic fibrosis transmembrane regulator exon 9. J Biol Chem 2003:278(29):26580–26588.

    Article  CAS  PubMed  Google Scholar 

  54. Martinez-Contreras R, Fisette JF, Nasim FU et al. Intronic binding sites for hnRNP A/B and hnRNP F/H proteins stimulate pre-mRNA splicing. PLoS Biol 2006;4(2):c21.

    Article  CAS  Google Scholar 

  55. Paul S, Dansithong W, Kim D et al. Interaction of musleblind, CUG-BP1 and hnRNP H proteins in DMl-assodated aberrant IR splicing. EMBO J 2006;25(18):4271–4283.

    Article  CAS  PubMed  Google Scholar 

  56. Wang Z, Rolish ME, Yeo G et al. Systematic identification and analysis of exonic splicing silencets. Cell 2004;119(6):831–845.

    Article  CAS  PubMed  Google Scholar 

  57. Sironi M, Menozzi G, Riva L et al. Silencer éléments as possible inhibitors of pseudoexon splicing. Nucleic Adds Res 2004;32(5):1783–1791.

    Article  CAS  Google Scholar 

  58. Romano M, Marcucci R, Buratti E et al. Regulation of 3′ splice site selection in the 844ins68 polymorphism of the cystathionine Beta-synthase gene. J Biol Chem 2002;277(46):43821–43829.

    Article  CAS  PubMed  Google Scholar 

  59. Buratti E, Baralle M, De Conti L et al. hnRNP H binding at the 5′ splice site correlates with the pathological effect of two intronic mutations in the NF-1 and TSHbeta genes. Nucleic Acids Res 2004;32(14):4224–4236.

    Article  CAS  PubMed  Google Scholar 

  60. Siebel CW, Admon A, Rio DC. Soma-specific expression and cloning of PSI, a negative regulator of P element pre-mRNA splicing. Genes Dev 1995;9(3):269–283.

    Article  CAS  PubMed  Google Scholar 

  61. Zahler AM, Damgaard CK, Kjems J et al. SC35 and heterogeneous nuclear ribonucleoprotein A/B proteins bind to a juxtaposed exonic splicing enhancer/exonic splicing silencer element to regulate HIV-1 tat exon 2 splicing, J Biol Chem 2004;279(11):10077–10084.

    Article  CAS  PubMed  Google Scholar 

  62. Hallay H, Locker N, Ayadi L et al. Biochemical and NMR study on the competition between proteins SC35, SRp40 and hnRNP Al at the HIV-1 Tat exon 2 splicing site. J Biol Chem 2006.

    Google Scholar 

  63. Kashima T, Manley JL. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet 2003;34(4):s460–s463.

    Article  Google Scholar 

  64. Cartegni L, Hastings ML, Calarco JA et al. Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet 2006;78(1):63–77.

    Article  CAS  PubMed  Google Scholar 

  65. Cartegni L, Krainer AR. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet 2002;30(4):377–384.

    Article  CAS  PubMed  Google Scholar 

  66. Crawford JB, Patton JG. Activation of (alpha)-tropomyosin exon 2 is regulated by the SR protein 9G8 and heterogeneous nuclear ribonucleoproteins H and F. Mol Cell Biol 2006.

    Google Scholar 

  67. Domsic JK, Wang Y, Mayeda A et al. Human immunodeficiency virus type 1 hnRNP A/B-dependent exonic splicing silencer ESSV antagonizes binding of U2AF65 to viral polypyrimidine tracts. Mol Cell Biol 2003;23(23):8762–8772.

    Article  CAS  PubMed  Google Scholar 

  68. Min H, Chan RC, Black DL. The generally expressed hnRNP F is involved in a neural-specific pre-mRNA splicing event. Genes Dev 1995;9(21):2659–2671.

    Article  CAS  PubMed  Google Scholar 

  69. Chou MY, Rooke N, Turck CW et al. hnRNP H is a component of a splicing enhancer complex that activates a c-src alternative exon in neuronal cells. Mol Cell Biol 1999;19(1):69–77

    CAS  PubMed  Google Scholar 

  70. Garneau D, Revil T, Fisette JF et al. Heterogeneous nuclear ribonucleoprotein F/H proteins modulate the alternative splicing of the apoptotic mediator Bd-x. J Biol Chem 2005;280(24):22641–22650

    Article  CAS  PubMed  Google Scholar 

  71. Hastings ML, Wilson CM, Munroe SH. A purine-rich intronic element enhances alternative splicing of thyroid hormone receptor mRNA, RNA 2001;7(6):859–874.

    Article  CAS  PubMed  Google Scholar 

  72. Caputi M, Zahler AM. Determination of the RNA binding specificity of the heterogeneous nuclear ribonucleoprotein (hnRNP) H/H′/2H9 family. J Biol Chem 2001;276(47):43850–43859.

    Article  CAS  PubMed  Google Scholar 

  73. Chabot B, Blanchette M, Lapierre I et al. An intron element modulating 5′ splice site selection in the hnRNP Al pre-mRNA interacts with hnRNP A1, Mol Cell Biol 1997;17(4):1776–1786.

    CAS  PubMed  Google Scholar 

  74. Blanchette M, Chabot B, Modulation of exon skipping by high-affinity hnRNP A1-binding sites and by intron elements that repress splice site utilization. EMBO J 1999;18(7):1939–1952.

    Article  CAS  PubMed  Google Scholar 

  75. Chabot B, LeBel C, Hutchison S et al. Heterogeneous nuclear ribonucleoprotein particle A/B proteins and the control of alternative splicing of the mammalian heterogeneous nuclear ribonucleoprotein particle Al pre-mRNA. Prog Mol Subcell Biol 2003;31:59–88.

    CAS  PubMed  Google Scholar 

  76. Nasim FU, Hutchison S, Cordeau M et al. High-affinity hnRNP A1 binding sites and duplex-forming inverted repeats have similar effects on 5′ splice site selection in support of a common looping out and repression mechanism. RNA 2002;8(8):1078–1089.

    Article  CAS  PubMed  Google Scholar 

  77. Yeo G, Hoon S, Venkatesh B et al. Variation in sequence and organization of splicing regulatory elements in vertebrate genes. Proc Natl Acad Sci USA 2004;101(44):15700–15705.

    Article  CAS  PubMed  Google Scholar 

  78. McCullough AJ, Berget SM. G triplets located throughout a dass of small vertebrate introns enforce intron borders and regulate splice site selection. Mol Cell Biol 1997;17(8):4562–4571.

    CAS  PubMed  Google Scholar 

  79. McNally LM, Yee L, McNally MT. Heterogeneous nuclear ribonucleoprotein H is required for optimal U11 small nuclear ribonucleoprotein binding to a retroviral RNA-processing control element: implications for U12-dependent RNA splicing. J Biol Chem 2006;281(5):2478–2488.

    Article  CAS  PubMed  Google Scholar 

  80. Gamberi C, Izaurralde E, Bcisel C et al. Interaction between the human nuclear cap-binding protein complex and hnRNP F. Mol Cell Biol 1997;17(5):2587–2597.

    CAS  PubMed  Google Scholar 

  81. Mahe D, Mahl P, Gattoni R et al. Cloning of human 2H9 heterogeneous nuclear ribonucleoproteins. Relation with splicing and early heat shock-induced splicing arrest. J Biol Chem 1997;272(3):1827–1836.

    Article  CAS  PubMed  Google Scholar 

  82. Gattoni R, Mahe D, Mahl P et al. The human hnRNP-M proteins: structure and relation with early heat shock-induced splicing arrest and chromosome mapping. Nucleic Acids Res 1996;24(13):2535–2542.

    Article  CAS  PubMed  Google Scholar 

  83. Zu K, Sikes ML, Haynes SR et al. Altered levels of the Drosophila HRB87F/hrp36 hnRNP protein have limited effects on alternative splicing in vivo. Mol Biol Cell 1996;7(7):1059–1073.

    CAS  PubMed  Google Scholar 

  84. Park JW, Parisky K, Celotto AM et al. Identification of alternative splicing regulators by RNA interference in Drosophila. Proc Natl Acad Sci USA 2004.

    Google Scholar 

  85. Blanchette M, Green RE, Brenner SE et al. Global analysis of positive and negative pre-mRNA splicing regulators in Drosophila. Genes Dev 2005: 19(11):1306–1314.

    Article  CAS  PubMed  Google Scholar 

  86. Sierakowska H, Szer W, Furdon PJ et al. Antibodies to hnRNP core proteins inhibit in vitro splicing of human beta-globin pre-mRNA. Nucleic Acids Res 1986;14(13):5241–5254.

    Article  CAS  PubMed  Google Scholar 

  87. Choi YD, Grabowski PJ, Sharp PA et al. Heterogeneous nuclear ribonuclcoproteins: role in RNA splicing. Science 1986;231(4745):1534–1539.

    Article  CAS  PubMed  Google Scholar 

  88. Staknis D, Reed R. SR proteins promote the first specific recognition of pre-mRNA and are present together with the Ul small nuclear ribonucleoprotein particle in a general splicing enhancer complex. Mol Cell Biol 1994;14(11):7670–7682.

    CAS  PubMed  Google Scholar 

  89. Garcia-Blanco MA, Jamison SF, Sharp PA. Identification and purification of a 62,000-dalton protein that binds specifically to the polypyrimidine tract of introns. Genes Dev 1989;3(12A):1874–1886.

    Article  CAS  PubMed  Google Scholar 

  90. Swanson MS, Dreyfuss G. RNA binding specificity of hnRNP proteins: a subset bind to the 3′ end of introns. EMBO J 1988;7(11):3519–3529.

    CAS  PubMed  Google Scholar 

  91. Roscigno RF, Weiner M, Garcia-Blanco MA. A mutational analysis of the polypyrimidine tract of introns. Effects of sequence differences in pyrimidine tracts on splicing. J Biol Chem 1993;268(15):11222–11229.

    CAS  PubMed  Google Scholar 

  92. Sebillon P, Beldjord C, Kaplan JC et al. A T to G mutation in the polypyrimidine tract of the second incron of the human beta-globin gene reduces in vitro splicing efficiency: evidence for an increased hnRNP C interaction. Nucleic Acids Res 1995;23(17):3419–3425.

    Article  CAS  PubMed  Google Scholar 

  93. Williamson DJ, Banik-Maiti S, DeGregori J et al. hnRNP C is required for postimplantation mouse development but Is dispensable for cell viability. Mol Cell Biol 2000;20(11):4094–4105.

    Article  CAS  PubMed  Google Scholar 

  94. Mikula M, Dzwonek A, Karczmarski J et al. Landscape of the hnRNP K protein-protein interactome. Proteomics 2006;6(8):2395–2406.

    Article  CAS  PubMed  Google Scholar 

  95. Bomsztyk K, Denisenko O, Ostrowski J. hnRNP K: one protein multiple processes. Bioessays 2004;26(6):629–638.

    Article  CAS  PubMed  Google Scholar 

  96. Expert-Bezancon A, Le Caer JP, Marie J. Heterogeneous nuclear ribonucleoprotein (hnRNP) K is a component of an intronic splicing enhancer complex that activates the splicing of the alternative exon 6A from chicken beta-tropomyosin pre-mRNA. J Biol Chem 2002;277(195:16614–16623.

    Article  CAS  PubMed  Google Scholar 

  97. Ule J, Stefani G, Mele A et al. An RNA map predicting Nova-dependent splicing regulation. Nature 2006;444(7119):580–586.

    Article  CAS  PubMed  Google Scholar 

  98. Siebel CW, Fresco LD, Rio DC. The mechanism of somatic inhibition of Drosophila P-element pre-mRNA splicing: multiprotein complexes at an exon pseudo-5′ splice site control Ul snRNP binding. Genes Dev 1992;6(8):1386–1401.

    Article  CAS  PubMed  Google Scholar 

  99. Rothrock CR, House AE, Lynch KW. HnRNP L represses exon splicing via a regulated exonic splicing silencer. EMBO J 2005;24(15):2792–2802.

    Article  CAS  PubMed  Google Scholar 

  100. Hofmann Y, Wirth B. hnRNP-G promotes exon 7 inclusion of survival motor neuron (SMN) via direct interaction with Htra2-betal. Hum Mol Genet 2002;11(17):2037–2049.

    Article  CAS  PubMed  Google Scholar 

  101. Hofmann Y, Lorson CL, Stamm S et al. Htra2-beta 1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). Proc Natl Acad Sci USA 2000;97(17):9618–9623.

    Article  CAS  PubMed  Google Scholar 

  102. Venables JP, Elliott DJ, Makarova OV et al. RBMY, a probable human spermatogenesis factor and other hnRNP G proteins interact with Tra2beta and affect splicing. Hum Mol Genet 2000;9(55:685–694.

    Article  CAS  PubMed  Google Scholar 

  103. Nasim MT, Chernova TK, Chowdhury HM et al. HnRNP G and Tra2beta: opposite effects on splicing matched by antagonism in RNA binding. Hum Mol Genet 2003;12(11):1337–1348.

    Article  CAS  PubMed  Google Scholar 

  104. Barnard DC, Li J, Peng R et al. Regulation of alternative splicing by SRrp86 through coactivation and repression of specific SR proteins. RNA 2002;8(4):526–533.

    Article  CAS  PubMed  Google Scholar 

  105. Barnard DC, Patton JG. Identification and characterization of a novel serine-arginine-rich splicing regulatory protein. Mol Cell Biol 2000;20(9):3049–3057.

    Article  CAS  PubMed  Google Scholar 

  106. Li J, Hawkins IC, Harvey CD et al. Regulation of alternative splicing by SRrp86 and its interacting proteins. Mol Cell Biol 2003;23(21):7437–7447.

    Article  CAS  PubMed  Google Scholar 

  107. Valcarcel J. Gebauer E Post-transcriptional regulation: the dawn of PTB. Curr Biol. 1997:7(11):R705–R708.

    Article  CAS  PubMed  Google Scholar 

  108. Spellman R, Rideau A, Matlin A, et al. Regulation of alternative splicing by PTB and associated factors. Biochem Soc Trans. 2005;33(Pt 3):457–460.

    Article  CAS  PubMed  Google Scholar 

  109. Wagner EJ, Garcia-Blanco MA. Polypyrimidine tract binding protein antagonizes exon definition. Mol Cell Biol 2001;21(10):3281–3288.

    Article  CAS  PubMed  Google Scholar 

  110. Lou H, Helfman DM, Gagel RF et al Polypyrimidine tract-binding protein positively regulates inclusion of an alternative 3′-terninal exon. Mol Cell Biol 1999;19(1):78–85.

    CAS  PubMed  Google Scholar 

  111. Smith CW, Nadal-Ginard B. Mutually exclusive splicing of alpha-tropomyosin exons enforced by an unusual lariat branch point location: implications for constitutive splicing. Cell 1989;56(5):749–758.

    Article  CAS  PubMed  Google Scholar 

  112. Mullen MP, Smith CW, Patton JG et al. Alpha-tropomyosin mutually exclusive exon selection: competition between branchpoint/polypyrimidine tracts determines default exon choke. Genes Dev 1991;5(4):642–655.

    Article  CAS  PubMed  Google Scholar 

  113. Goading C, Roberts GC, Moreau G et al. Smooth muscle-specific switching of alpha-tropomyosin mutually exclusive exon selection by specific inhibition of the strong default exon. EMBO J 1994;13(16):3861–3872

    Google Scholar 

  114. Perez I. Lin CH, McAfee JG et al. Mutation of PTB binding sites causes misregulation of alternative 3′ splice site selection in vivo. RNA 1997;3(7):764–778.

    CAS  PubMed  Google Scholar 

  115. Lin CH, Patton JG. Regulation of alternative 3′ splice site selection by constitutive splicing factors. RNA 1995;1(3):234–245.

    CAS  PubMed  Google Scholar 

  116. Gooding C, Roberts GC, Smith CW. Role of an inhibitory pyrimidine element and polypyrimidine tract binding protein in repression of a regulated alpha-tropomyosin exon. RNA 1998;4(1):85–100.

    CAS  PubMed  Google Scholar 

  117. Wagner EJ, Garcia-Blanco MA. RNAi-mediated PTB depletion leads to enhanced exon definition. Mol Cell 2002;10(4):943–949.

    Article  CAS  PubMed  Google Scholar 

  118. Southby J, Gooding C, Smith CW. Polypyrimidine tract binding protein functions as a repressor to regulate alternative splicing of alpha-actinin mutally exclusive exons. Mol Cell Biol 1999;19(4):2699–2711.

    CAS  PubMed  Google Scholar 

  119. Ashiya M, Grabowski PJ. A neuron-specific splicing switch mediated fay an array of pre-mRNA represser sites: evidence of a regulatory role for the polypyrimidine tract binding protein and a brain-specific PTB counterpart. RNA 1997;3(93):996–1015.

    CAS  PubMed  Google Scholar 

  120. Amir-Ahmady B, Boutz PL, Markovtsov V et al. Exon repression by polypyrimidine tract binding protein. RNA 2005;11(5):699–716.

    Article  CAS  PubMed  Google Scholar 

  121. Chan RC, Black DL. The polypyrimidine tract binding protein binds upstream of neural cell-specific c-src exon N1 to repress the splicing of the intron downstream. Mol Cell Biol 1997;17(8):4667–4676.

    CAS  PubMed  Google Scholar 

  122. Chou MY, Underwood JG, Nikolic J et al. Multisite RNA binding and release of polypyrimidine tract binding protein during the regulation of c-src neural-specific splicing. Mol Cell 2000;5(6):949–957.

    Article  CAS  PubMed  Google Scholar 

  123. Min H, Turck CW, Nikolic JM et al. A new regulatory protein, KSRP, mediates exon inclusion through an intronic splicing enhancer. Genes Dev 1997;11(8):1023–1036.

    Article  CAS  PubMed  Google Scholar 

  124. Black DL. Activation of c-src neuron-specific splicing by an unusual RNA element in vivo and in vitro. Cell 1992;69(5):795–807.

    Article  CAS  PubMed  Google Scholar 

  125. Modafferi EF, Black DL. A complex intronic splicing enhancer from the c-src pre-mRNA activates inclusion of a heterologous exon. Mol Cell Biol 1997;17(11):6537–6545.

    CAS  PubMed  Google Scholar 

  126. Sharma S, Falick AM, Black DL. Polypyrimidine tract binding protein blocks the 5′ splice site-dependent assembly of U2AF and the prespliceosomal E complex. Mol Cell 2005;19(4):485–496.

    Article  CAS  PubMed  Google Scholar 

  127. Markovtsov V, Nikolic JM, Goldman JA et al. Cooperative assembly of an hnRNP complex induced by a tissue-specific homolog of polypyrimidine tract binding protein. Mol Cell Biol 2000;20(20):7463–7479.

    Article  CAS  PubMed  Google Scholar 

  128. Yamamoto H, Tsukahara K, Kanaoka Y et al. Isolation of a mammalian homologue of a fission yeast differentiation regulator. Mol Cell Biol 1999;19(5):3829–3841.

    CAS  PubMed  Google Scholar 

  129. Gooding C, Kemp P, Smith CW. A novel polypyrimidine tract-binding protein paralog expressed in smooth muscle cells. J Biol Chem 2003;278(17):15201–15207.

    Article  CAS  PubMed  Google Scholar 

  130. Izquierdo JM, Majos N, Bonnal S et al. Regulation of Fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition. Mol Cell 2005;19(4)475–484

    Article  CAS  PubMed  Google Scholar 

  131. Monie TP, Hernandez H, Robinson CV et al. The polypyrimidine tract binding protein is a monomer. RNA 2005;11(12):1803–1808.

    Article  CAS  PubMed  Google Scholar 

  132. Petoukhov MV, Monie TP, Allain FH et al. Conformation of polypyrimidine tract binding protein in solution. Structure 2006;14(6);1021–1027.

    Article  CAS  PubMed  Google Scholar 

  133. Oberstrass FC, Auweter SD, Erat M et al. Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science 2005;309(5743):2054–2057.

    Article  CAS  PubMed  Google Scholar 

  134. Charlet BN, Logan P, Singh G et aL Dynamic antagonism between ETR-3 and PTB regulates cell type-specific alternative splicing. Mol Cell 2002;9(3):649–658.

    Article  Google Scholar 

  135. Gromak N, Matlin AJ, Cooper TA et al. Antagonistic regulation of alpha-actinin alternative splicing by CELF proteins and polypyrimidine tract binding protein. RNA 2003:9(4):443–456.

    Article  CAS  PubMed  Google Scholar 

  136. Shukla S, Del Gatto-Konczak R Breathnach R et al. Competition of PTB with TIA proteins for binding to a U-rich cis-elment determines tissue-specific splicing of the myosin phosphatase targeting subunit 1. RNA 2005;11(11):1725–1736.

    Article  CAS  PubMed  Google Scholar 

  137. Huttelmaier S, Illenberger S, Grosheva I et al. Raverl, a dual compartment protein, is a ligand for PTB/hnRNPI and microfilament attachment proteins, J Cell Biol 2001;155(5):775–786.

    Article  CAS  PubMed  Google Scholar 

  138. Gromak N, Rideau A, Southby J et al The PTB interacting protein raverl regulates alpha-tropomyosin alternative splicing. EMBO J 2003;22(23):6356–6364.

    Article  CAS  PubMed  Google Scholar 

  139. Rideau AP, Gooding C, Simpson PJ et al. A peptide motif in Raverl mediates splicing repression by interaction with the PTB RRM2 domain. Nat Struct Mol Biol 2006;13(9):839–848.

    Article  CAS  PubMed  Google Scholar 

  140. Wollerton MC, Gooding C, Robinson F et al. Differential alternative splicing activity of isoforms of polypyrimidine tract binding protein (PTB). RNA 2001;7(6):819–832.

    Article  CAS  PubMed  Google Scholar 

  141. Wollerton MC, Gooding C, Wagner EJ et al. Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol Cell 2004: 13(1):91–100.

    Article  CAS  PubMed  Google Scholar 

  142. Hui J, Stangl K, Lane WS et aL HnRNP L stimulates splicing of the eNOS gene by binding to variable-length CA repeats. Nat Struct Biol 2003;10(1):33–37.

    Article  CAS  PubMed  Google Scholar 

  143. Hui J, Hung LH, Heiner M et al. Innonic CA-repeat and CA-rich elements: a new class of regulators of mammalian alternative splicing, EMBO J 2005;24(11):1988–1998.

    Article  CAS  PubMed  Google Scholar 

  144. Cheli Y, Kunicki TJ. hnRNP L regulates differences in expression of mouse integrin alpha2betal. Blood 2006;107(11):4391–4398.

    Article  CAS  PubMed  Google Scholar 

  145. Rothrock C, Cannon B, Hahm B et aL A conserved signal-responsive sequence mediates activation-induced alternative splicing of CD45. Mol Cell 2003;12(5):1317–1324.

    Article  CAS  PubMed  Google Scholar 

  146. Lynch KW, Weiss A. A model system for activation-induced alternative splicing of CD45 pre-mRNA in T-cells implicates protein kinase C and Ras. Mol Cell Biol 2000;20(1):70–80.

    Article  CAS  PubMed  Google Scholar 

  147. Tong A, Nguyen J, Lynch KW. Differential expression of CD45 isoforms is controlled by the combined activity of basal and inducible splicing-regulatory elements in each of the variable exons. J Biol Chem 2005;280(46);38297–38304.

    Article  CAS  PubMed  Google Scholar 

  148. House AE, Lynch KW. An exonic splicing silencer represses spliceosome assembly after ATP-dependent exon recognition. Nat Struct Mot Biol 2006;13(10):937–944

    Article  CAS  Google Scholar 

  149. Hahm B, Cho OH, Kim JE et al. Polypyrimidine tract-binding protein interacts with HnRNP L. FEBS Lett 1998;425(3):401–406.

    Article  CAS  PubMed  Google Scholar 

  150. Robinson F, Smith CW. A splicing repressor domain in polypyrimidine tract-binding protein. J Biol Chem 2006;281(2):800–806.

    Article  CAS  PubMed  Google Scholar 

  151. Kafasla P, Patrinou-Georgoula M, Lewis JD et aL Association of the 72/74-kDa proteins, members of the heterogeneous nuclear ribonucleoprotein M group, with the pre-mRNA at early stages of spliceosome assembly. Biochem J 2002;363(Pt 3):793–799.

    Article  CAS  PubMed  Google Scholar 

  152. Kiesler E, Hase ME, Brodin D et aL Hrp59, an hnRNP M protein in Chironomus and Drosophila, binds to exonic splicing enhancers and is required for expression of a subset of mRNAs. J Cell Biol 2005;168(7):1013–1025.

    Article  CAS  PubMed  Google Scholar 

  153. Hallier M, Lerga A, Barnache S et al. The transcription factor Spi-1/PU.1 interacts with the potential splicing factor TLS. J Biol Chem 1998;273(9):4838–4842.

    Article  CAS  PubMed  Google Scholar 

  154. Yang L, Embree LJ, Tsai S et al. Oncoprotein TLS interacts with serine-arginine proteins involved in RNA splicing. J Biol Chem 1998;273(43):27761–27764.

    Article  CAS  PubMed  Google Scholar 

  155. Zhang D, Paley AJ, Childs G. The transcriptional repressor ZFM1 interacts with and modulates the ability of EWS to activate transcription. J Biol Chem 1998;273(29):18086–18091.

    Article  CAS  PubMed  Google Scholar 

  156. Zinszner H, Albalat R, Ron D. A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP. Genes Dev 1994;8(21):3513–3526.

    Article  Google Scholar 

  157. Neubauer G, King A, Rappsilber J et aL Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex Nat Genet 1998;20(1):46–50.

    Article  CAS  PubMed  Google Scholar 

  158. Mourelatos Z, Abel L, Yong J et aL SMN interacts with a novel family of hnRNP and spliceosomal proteins. EMBO J 2001;20(19):5443–5452.

    Article  CAS  PubMed  Google Scholar 

  159. Singh R, Valcarcel J. Building specificity with nonspecific RNA-binding proteins. Nat Struct Mol Biol. 2005;12(8):645–653.

    Article  CAS  PubMed  Google Scholar 

  160. Spellman R, Smith CW. Novel modes of splicing repression by PTB. Trends Biochem Sci. 2006;31(2):73–76.

    Article  CAS  PubMed  Google Scholar 

  161. Das R, Dufu K, Romney B et al. Functional coupling of RNAPII transcription to spliceosome assembly. Genes Dev 2006;20(9):1100–1109.

    Article  CAS  PubMed  Google Scholar 

  162. Charpentier B, Rosbash M. Intramolecular structure in yeast introns aids the early steps of in vitro spliceosome assembly. RNA 1996;2(6):509–522.

    CAS  PubMed  Google Scholar 

  163. Newman A. Specific accessory sequences in Saccharomyces cerevisiae introns control assembly of pre-mRNAs into spliceosomes. EMBO J 1987;6(12):3833–3839.

    CAS  PubMed  Google Scholar 

  164. Shin C, Manley JL. Cell signalling and the control of prc-mRNA splicing. Nat Rev Mol Cell Biol. 2004;5(9):727–738.

    Article  CAS  PubMed  Google Scholar 

  165. Blaustein M, Pelisch F, Tanos T, et al. Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT. Nat Struct Mol Biol. 2005;12(12):1037–1044

    Article  CAS  PubMed  Google Scholar 

  166. Graveley BR. Sorting out the complexity of SR protein functions. RNA, 2000;6(9):1197–1211

    Article  CAS  PubMed  Google Scholar 

  167. van der Houven van Oordt W, Diaz-Meco MT, Lozano J et al. The MKK (3/6)-p38-signaling cascade alters the subcellular distribution of hnRNP A1 and modulates alternative splicing regulation. J Cell Biol 2000;149(2):307–316.

    Article  PubMed  Google Scholar 

  168. Mikula M, Karczmarski J, Drwonek A et al. Casein kinases phosphorylate multiple residues spanning the entire hnRNP K length. Biochim Biophys Acta 2006;1764(2):299–306.

    CAS  PubMed  Google Scholar 

  169. Habelhah H, Shah K, Huang L et al. ERK phosphorylation drives cytoplasmic accumulation of hnRNP-K and inhibition of mRNA translation. Nat Cell Biol 2001;3(3):325–330.

    Article  CAS  PubMed  Google Scholar 

  170. Xie J, Lee JA, Kress TL et al. Protein kinase A phosphorylation modulates transport of the polypyrimidine tract-binding protein. Proc Nad Acad Sci USA 2003;100(15):8776–8781.

    Article  CAS  Google Scholar 

  171. Pinol-Roma S, Dreyfuss G. Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 1992;355(6362):730–732.

    Article  CAS  PubMed  Google Scholar 

  172. Michael WM, Choi M, Dreyfuss G. A nuclear carport signal in hnRNP A1: a signal-mediated, temperature-dependent nuclear protein export pathway. Cell 1995;83(3):415–422.

    Article  CAS  PubMed  Google Scholar 

  173. Kim S, Merrill BM, Rajpurohit R et al. Identification of N(G)-methylarginine residues in human heterogeneous RNP protein Al: Phe/Gly-Gly-Gly-Arg-Gly-Gly-Gly/Phe is a preferred recognition motif. Biochemistry 1997;36(17):5185–5192.

    Article  CAS  PubMed  Google Scholar 

  174. Liu Q, Dreyfuss G. In vivo and in vitro arginine methylation of RNA-binding proteins. Mol Cell Biol 1995;15(55:2800–2808.

    CAS  PubMed  Google Scholar 

  175. Herrmann F, Bossen: M, Schwander A et al. Arginine methylation of scaffold attachment factor A by heterogeneous nuclear ribonucleoprotein particle-associated PRMT1. J Biol Chem 2004;279(47):48774–48779.

    Article  CAS  PubMed  Google Scholar 

  176. Ostarcek-Lederer A, Ostareck DH, Rucknagel KP et ai Asymmetrie arginine dimethylation of heterogeneous nuclear ribonucleoprotein K by protein-arginine methyltransferase 1 inhibits its interaction with c-Src. J Biol Chem 2006;281(16):11115–11125.

    Article  CAS  Google Scholar 

  177. Nichols RC, Wang XW, Tang J et al. The RGG domain in hnRNP A2 affects subcellular localization. Exp Cell Res 2000;256(2):522–532.

    Article  CAS  PubMed  Google Scholar 

  178. Ohkura N, Takahashi M, Yaguchi H et al. Coactivator-associated arginine methyltransferase 1, CARM1, affects pre-mRNA splicing in an isoform-specific manner. J Biol Chem 2005;280(32):28927–28935.

    Article  CAS  PubMed  Google Scholar 

  179. Vassileva MT, Matunis MJ. SUMO modification of heterogeneous nuclear ribonucleoproteins. Mol Cell Biol 2004;24(9):3623–3632.

    Article  CAS  PubMed  Google Scholar 

  180. Li T, Evdokimov E, Shen RF et al. Sumoylation of heterogeneous nuclear ribonucleoproteins, zinc finger proteins and nuclear pore complex proteins: a proteomic analysis. Proc Natl Acad Sci USA 2004;101(23):8551–8556.

    Article  CAS  PubMed  Google Scholar 

  181. Kornblihtt AR. Promoter usage and alternative splicing. Curr Opin Cell Biol. 2005;17(3):262–268.

    Article  CAS  PubMed  Google Scholar 

  182. Bentley DL. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr Opin Cell Biol 2005;17(3):251–256.

    Article  CAS  PubMed  Google Scholar 

  183. Wei CC, Zhang SL, Chen YW et al. Heterogeneous nuclear ribonucleoprotein k modulates angiotensinogen gene expression in kidney cells. J Biol Chem 2006;281(35):25344–25355.

    Article  CAS  PubMed  Google Scholar 

  184. Moumen A, Masterson P, O’Connor MJ et al. hnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell 2005;123(6):1065–1078.

    Article  CAS  PubMed  Google Scholar 

  185. Swinburne IA, Meyer CA, Liu XS et al. Genomic localization of RNA binding proteins reveals links between pre-mRNA processing and transcription. Genome Res 2006;16(7):912–921.

    Article  CAS  PubMed  Google Scholar 

  186. Uranishi H, Tetsuka T, Yamashita M et al. Involvement of the pro-oncoprotein TLS (translocated in liposarcoma) in nuclear factor-kappa B p65-mediated transcription as a coactivator. J Biol Chem 2001;276(16):13395–13401.

    Article  CAS  PubMed  Google Scholar 

  187. Law WJ, Cann KL, Hicks GG. TLS, EWS and TAF15: a model for transcriptional integration of gene expression. Brief Funct Genomic Proteomic 2006;5(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  188. Gao C, Guo H, Mi Z et al. Transcriptional regulatory functions of heterogeneous nuclear ribonucleoprotein-U and-A/B in endotoxin-mediated macrophage expression of osteopontin. J Immunol 2005;175(1):523–530.

    CAS  PubMed  Google Scholar 

  189. Xia H. Regulation of gamma-fibrinogen chain expression by heterogeneous nuclear ribonucleoprotein Al. J Biol Chem 2005;280(13):13171–13178.

    Article  CAS  PubMed  Google Scholar 

  190. Das S, Ward SV, Markte D et al. DNA damage-binding proteins and heterogeneous nuclear ribonucleoprotein A1 (unction as constitutive KCS element components of the interferon-inducible RNA-dependent protein kinase promoter. J Biol Chem 2004;279(8):7313–7321.

    Article  CAS  PubMed  Google Scholar 

  191. Mahajan MC, Narlikar GJ, Boyapacy G et al. Heterogeneous nuclear ribonucleoprotein C1/C2, MeCP1 and SWI/SNF form a chromatin remodeling complex at the beta-globin locus control region. Proc Natl Acad Sci USA 2005;102(42):15012–15017.

    Article  CAS  PubMed  Google Scholar 

  192. Yoshida T, Makino Y, Tamura T. Association of the rat heterogeneous nuclear RNA-ribonucleoprotein F with TATA-binding protein. FEBS Lett 1999;457(2):251–254.

    Article  CAS  PubMed  Google Scholar 

  193. Mattern KA, van Goethem RE, de Jong L et al. Major internal nuclear matrix proteins are common to different human cell types. J Cell Biochem 1997;65(1):42–52.

    Article  CAS  PubMed  Google Scholar 

  194. Hager GL, Nagaich AK, Johnson TA et al. Dynamics of nuclear receptor movement and transcription. Biochim Biophys Acta 2004;1677(1–3):46–51.

    CAS  PubMed  Google Scholar 

  195. Kim MK, Nikodem VM. hnRNP U inhibits carboxy-terminal domain phosphorylation by TFIIH and represses RNA polymerase II elongation. Mol Cell Biol 1999;19(10):6833–6844.

    CAS  PubMed  Google Scholar 

  196. Kukalev A, Nord Y, Palmberg C et al. Actin and hnRNP U cooperate for productive transcription by RNA polymerase IL Nat Struct Mol Biol 2005;12(3):238–244.

    Article  CAS  PubMed  Google Scholar 

  197. Spraggon L, Dudnakova T, Slight J et al. hnRNP-U directly interacts with WT1 and modulates WT1 transcriptional activation. Oncogene 2006.

    Google Scholar 

  198. Beck AR, Medley QG, O’Brien S et al. Structure, tissue distribution and genomic organization of the murine RAM-type RNA binding proteins TIA-1 and TIAR. Nucleic Acids Res 1996;24(195:3829–3835.

    Article  CAS  PubMed  Google Scholar 

  199. Barreau C, Paillard L, Mereau A et al. Mammalian CELF/Bruno-like RNA-binding proteins: molecular characteristics and biological functions. Biochimie 2006;88(5):515–525.

    Article  CAS  PubMed  Google Scholar 

  200. Han J, Cooper TA. Identification of CELF splicing activation and repression domains in viva Nucleic Acids Res 2005;33(9):2769–2780.

    Article  CAS  PubMed  Google Scholar 

  201. Kleinhenz B, Fabienke M, Swiniarski S et al. Raver2, a new member of the hnRNP family. FEBS Lett 2005;579(20)54254–54258.

    Article  CAS  Google Scholar 

  202. Kim Guisbert K, Duncan K, Li H et al. Functional specificity of shuttling hnRNPs revealed by genome-wide analysis of their RNA binding profiles. RNA 2005;11(45:383–393.

    Google Scholar 

  203. Stutz F, Bachi A, Doerks T et al. REF, an evolutionary conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export. RNA 2000;6(4):638–650.

    Article  CAS  PubMed  Google Scholar 

  204. Zenklusen D, Vinciguerra P, Strahm Y et al. The yeast hnRNP-Like proteins Yralp and Yra2p participate in mRNA export through interaction with Mex67p. Mol Cell Biol 2001;21(13):4219–4232

    Article  CAS  PubMed  Google Scholar 

  205. Preker PJ, Guthrie C. Autoregulation of the mRNA export factor Yralp requires inefficient splicing of its pre-mRNA. RNA 2006;12(6):994–1006.

    Article  CAS  PubMed  Google Scholar 

  206. Jimeno S, Luna R, Garcia-Rubio M et al. Thol, a novel hnRNP and Sub2 provide alternative pathways for mRNP biogenesis in yeast THO mutants. Mol Cell Biol 2006;26(12)4387–4398.

    Article  CAS  PubMed  Google Scholar 

  207. Burd CG, Dreyfuss G. RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing. EMBO J 1994;13(5):1197–1204.

    CAS  PubMed  Google Scholar 

  208. Del Gatto F, Gesnel MC, Breathnach R. The exon sequence TAGG can inhibit splicing. Nucleic Acids Res 1996;24(11):2017–2021.

    Article  PubMed  Google Scholar 

  209. Gorlach M, Burd CG, Dreyfuss G. The determinants of RNA-binding specificity of the heterogeneous nuclear ribonucleoprotein C proteins. J Biol Chem 1994;269(37):23074–23078.

    CAS  PubMed  Google Scholar 

  210. Wilusz J, Shenk T. A uridylate tract mediates efficient heterogeneous nuclear ribonucleoprotein C protcin-RNA cross-linking and functionally substitutes for the downstream element of the polyadenylation signal. Mol Cell Biol 1990;10(12):6397–6407.

    CAS  PubMed  Google Scholar 

  211. Soltaninassab SR, McAfee JG, Shahied-Milam L et al. Oligonucleotide binding specificities of the hnRNP C protein tetramer. Nucleic Adds Res 1998;26(14):3410–3417.

    Article  CAS  Google Scholar 

  212. Laroia G, Cuesta R, Brewer G et al. Control of mRNA decay by heat shock-ubiquitin-proteasome pathway. Science 1999;284(5413):499–502.

    Article  CAS  PubMed  Google Scholar 

  213. Xu N, Chen CY, Shyu AB. Versatile role for hnRNP D isoforms in the differential regulation of cytoplasmic mRNA turnover. Mol Cell Biol 2001;21(205:6960–6971.

    Article  CAS  PubMed  Google Scholar 

  214. Ishikawa F, Matunis MJ, Dreyfuss G et al. Nuclear proteins that bind the pre-mRNA 3′ spike site sequence r(UUAG/G5 and the human tdomeric DNA sequence d (TTAGGG)n. Mol Cell Biol 1993;13(7)4301–4310.

    CAS  PubMed  Google Scholar 

  215. Reimann I, Huth A, Thiele H et al. Suppression of 15-lipoxygenase synthesis by hnRNP E1l is dependent on repetitive nature of LOX mRNA 3′-UTR control element DICE. J Mol Biol 2002;315(5):965–974

    Article  CAS  PubMed  Google Scholar 

  216. Thisted T, Lyakhov DL, Liebhaber SA. Optimized RNA targets of two closely related triple KH domain proteins, heterogeneous nuclear ribonucleoprotein K and alphaCP-2KL, suggest Distinct modes of RNA recognition. J Biol Chem 2001;276(205:17484–17486.

    Article  CAS  PubMed  Google Scholar 

  217. Datar KV, Dreyfuss G, Swanson MS. The human hnRNP M proteins: identification of a methionine/ arginine-rich repeat motif in ribonucleoproteins. Nucleic Acids Res 1993;21(3):439–446.

    Article  CAS  PubMed  Google Scholar 

  218. Lerga A, Hallier M, Delva L et al. Identification of an RNA binding specificity for the potential splicing factor TLS. J Biol Chem 2001;276(9):6807–6816.

    Article  CAS  PubMed  Google Scholar 

  219. Blanc V, Navaratnam N, Henderson JO et al. Identification of GRY-RBP as an apolipoprotein B RNA-binding protein that interacts with both apobec-1 and apobec-1 complementation factor to modulate C to U editing. J Biol Chem 2001;276(13):10272–10283.

    Article  CAS  PubMed  Google Scholar 

  220. Rossoll W, Kroning AK, Ohndorf UM et al. Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons? Hum Mol Genet 2002;11(1):93–105.

    Article  CAS  PubMed  Google Scholar 

  221. Kiledjian M, Dreyfuss G. Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J 1992;11(7):2655–2664.

    CAS  PubMed  Google Scholar 

  222. Packelmayer FO, Dahm K, Renz A et al. Nucleic-acid-binding properties of hnRNP-U/SAF-A, a nuclear-matrix protein which binds DNA and RNA in vivo and in vitro. Eur J Biochem 1994;221(2);749–757.

    Article  Google Scholar 

  223. Wu JY, Maniatis T. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 1993;75(6):1061–1070.

    Article  CAS  PubMed  Google Scholar 

  224. Akindahunsi AA, Bandiera A, Manzini G. Vertebrate 2xRBD hnRNP proteins: a comparative analysis of genome, mRNA and protein sequences. Comput Biol Chem 2005;29(1):13–23.

    Article  CAS  PubMed  Google Scholar 

  225. Buvoli M, Cobianchi F, Bestagno MG et al. Alternative splicing in the human gene for the core protein Al generates another hnRNP protein. EMBO J 1990;9(4):1229–1235.

    CAS  PubMed  Google Scholar 

  226. Blanchette M, Chabot B. A highly stable duplex structure sequesters the 5′ splice site region of hnRNP A1 alternative exon 7B. RNA 1997;3(4):405–419.

    CAS  PubMed  Google Scholar 

  227. Burd CG, Swanson MS, Gorlach M et al. Primary structures of the heterogeneous nuclear ribonucleoprotein A2, B1 and C2 proteins: a diversity of RNA binding proteins is generated by small peptide inserts. Proc Natl Acad Sci USA 1989;86(24):9788–9792.

    Article  CAS  PubMed  Google Scholar 

  228. Siomi H, Matunis MJ, Michael WM et al. The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. Nucleic Adds Res 1993;21(5):1193–1198.

    Article  CAS  Google Scholar 

  229. Biamonti G, Ruggiu M, Saccone S et al. Two homologous genes, originated by duplication, encode the human hnRNP proteins A2 and A1. Nucleic Acids Res 1994;22(11):1996–2002.

    Article  CAS  PubMed  Google Scholar 

  230. Gorlach M, Wittekind M, Beckman RA et al. Interaction of the RNA-binding domain of the hnRNP C proteins with RNA. EMBO J 1992;11(9):3289–3295.

    CAS  PubMed  Google Scholar 

  231. Wan L, Kim JK, Pollard VW et al. Mutational definition of RNA-binding and protein-protein interaction domains of heterogeneous nuclear RNP C1. J Biol Chem 2001;276(10):7681–7688.

    Article  CAS  PubMed  Google Scholar 

  232. McAfee JG, Shahied-Milam L, Soltaninassab SR et al. A major determinant of hnRNP C protein binding to RNA is a novel bZIP-like RNA binding domain. RNA 1996;2(11):1139–1152.

    CAS  PubMed  Google Scholar 

  233. Shahied-Milam L, Soltaninassab SR, Iyer GV et al. The heterogeneous nuclear ribonucleoprotein C protein tetramer binds U1, U2 and U6 snRNAs through its high affinity RNA binding domain (the bZIP-like motif). J Biol Chem 1998:273(33):21359–21367.

    Article  CAS  PubMed  Google Scholar 

  234. Tan JH, Kajiwara Y, Shahied L et al. The bZIP-like motif of hnRNP C directs the nuclear accumulation of pre-mRNA and lethality in yeast. J Mol Biol 2001;305(4):829–838.

    Article  CAS  PubMed  Google Scholar 

  235. Nakielny S, Dreyfuss G. The hnRNP C proteins contain a nuclear retention sequence that can override nuclear export signals. J Cell Biol 1996;134(6):1365–1373.

    Article  CAS  PubMed  Google Scholar 

  236. Makeyev AV. Chkheidze AN, Liebhaber SA. A set of highly conserved RNA-binding proteins, alphaCP-1 and alphaCP-2, implicated in mRNA stabilization, ate coexpressed from an intronless gene and its intron-containing paralog. J Biol Chem 1999;274(35):24849–24857.

    Article  CAS  PubMed  Google Scholar 

  237. Kiledjian M, Wang X, Liebhaber SA, Identification of two KH domain proteins in the alpha-globin mRNP stability complex. EMBO J 1995;14(17):4357–4364

    CAS  PubMed  Google Scholar 

  238. Leffers H, Dejgaard K, Celis JE. Characterisation of two major cellular poly(rC)-binding human proteins, each containing three K-homologous (KH) domains. Eur J Biochem 1995;230(2):447–453.

    Article  CAS  PubMed  Google Scholar 

  239. Van Seuningen I, Ostrowski J, Bustelo XR et al. The K protein domain that recruits the interleukin 1-responsive K protein kinase lies adjacent to a cluster of c-Src and Vav SH3-binding sites. Implications that K protein acts as a docking platform. J Biol Chem 1995;270(45):26976–26985.

    Article  PubMed  Google Scholar 

  240. Makeyev AV, Liebhaber SA. Identification of two novel mammalian genes establishes a subfamily of KH-domain RNA-binding proteins. Genomics 2000;67(3):301–316.

    Article  CAS  PubMed  Google Scholar 

  241. Dejgaard K, Leffers H. Characterisation of the nucleic-acid-binding activity of KH domains. Different properties of different domains. Eur J Biochem 1996;241(2):25–431.

    Article  Google Scholar 

  242. Makeyev AV, Liebhaber SA. The poly (C)-binding proteins: a multiplicity of functions and a search for mechanisms. RNA 2002;8(3):265–278.

    Article  CAS  PubMed  Google Scholar 

  243. Michael WM, Eder PS, Dreyfuss G. The K nuclear shuttling domain: a novel signal for nuclear import and nuclear export in the hnRNP K protein. EMBO J 1997;16(12):3587–3598.

    Article  CAS  PubMed  Google Scholar 

  244. Honore B, Rasmussen HH, Votum H et al. Heterogeneous nuclear ribonucleoproteins H, H′ and F are members of a ubiquitously expressed subfamily of related but distinct proteins encoded by genes mapping to different chromosomes. J Biol Chem 1995;270(48):28780–28789.

    Article  CAS  PubMed  Google Scholar 

  245. Honore B. The hnRNP 2H9 gene, which is involved in the splicing reaction, is a multiply spliced gene. Blochim Biophys Acta 2000;1492(1):108–119.

    CAS  Google Scholar 

  246. Qian Z, Wilusz J. GRSF-1: a poly (A) + mRNA binding protein which interacts with a conserved G-rich element. Nucleic Acids Res 1994;22(12):2334–2343.

    Article  CAS  PubMed  Google Scholar 

  247. Soulard M, Della Valle V, Siomi MC et al. hnRNP G: sequence and characterization of a glycosylated RNA-binding protein. Nucleic Acids Res 1993;21(18):4210–4217.

    Article  CAS  PubMed  Google Scholar 

  248. Le Coniat M, Soulard M, Della Valle V et al. Localization of the human gene encoding heterogeneous nuclear RNA ribonucleoprotein G (hnRNP-G) to chromosome 6p12. Hum Genet 1992;88(5):593–595.

    Google Scholar 

  249. Lingenfelter PA, Delbridge ML, Thomas S et al. Expression and conservation of processed copies of the RBMX gene. Mamm Genome 2001;12(7):538–545.

    Article  CAS  PubMed  Google Scholar 

  250. Elliott DJ, Ma K, Kerr SM et al. An RBM homologue maps to the mouse Y chromosome and is expressed in germ cells. Hum Mol Genet 1996;5(7):869–874.

    Article  CAS  PubMed  Google Scholar 

  251. Venables JP, Vernet C, Chew SL et al. T-STAR/ETOILE: a novel relative of SAM68 that interacts with an RNA-binding protein implicated in spermatogenesis. Hum Mol Genet 1999;8(6):959–969.

    Article  CAS  PubMed  Google Scholar 

  252. Elliott DJ. RBMY genes and AZFb deletions. J Endocrinol Invest 2000;23(10):652–658.

    CAS  PubMed  Google Scholar 

  253. Delbridge ML, Ma K, Subbarao MN et al. Evolution of mammalian HNRPG and its relationship with the putative azoospermia factor RBM. Mamm Genome 1998;9(2):168–170.

    Article  CAS  PubMed  Google Scholar 

  254. Ghetri A, Pinol-Roma S, Michael WM et al. hnRNP I, the polypyrimidine tract-binding protein; distinct nuclear localization and association with hnRNAs. Nucleic Acids Res 1992;20(14):3671–3678.

    Article  Google Scholar 

  255. Polydorides AD, Okano HJ, Yang YY et al. A brain-enriched polypyrimidine tract-binding protein antagonizes the ability of Nova to regulate neuron-specific alternative splicing. Proc Natl Acad Sci USA 2000;97(12):6350–6355.

    Article  CAS  PubMed  Google Scholar 

  256. Hahm B, Kim YK, Kim JH et al. Heterogeneous nuclear ribonucleoprotein L interacts with the 3′ border of the internal ribosomal entry site of hepatitis C virus. J Virol 1998;72(11):8782–8788.

    CAS  PubMed  Google Scholar 

  257. Kafasla P, Patrinou-Georgoula M, Guialis A. The 72/74-kDa polypeptides of the 70–110 S large heterogeneous nuclear ribonucleoprotein complex (LH-nRNP) represent a discrete subset of the hnRNP M protein family. Biochem J 2000;350 Pt 2:495–503.

    Article  CAS  PubMed  Google Scholar 

  258. Iko Y, Kodama TS, Kasai N et al. Domain architectures and characterization of an RNA-binding protein, TLS. J Biol Chem 2004;279(43):44834–44840.

    Article  CAS  PubMed  Google Scholar 

  259. Kipp M, Schwab BL, Przybylski M et al. Apoptotic cleavage of scaffold attachment factor A (SAF-A) by caspase-3 occurs at a noncanonical cleavage site. J Biol Chem 2000;275(7):5031–5036.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Chabot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Martinez-Contreras, R., Cloutier, P., Shkreta, L., Fisette, JF., Revil, T., Chabot, B. (2007). hnRNP Proteins and Splicing Control. In: Blencowe, B.J., Graveley, B.R. (eds) Alternative Splicing in the Postgenomic Era. Advances in Experimental Medicine and Biology, vol 623. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77374-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-77374-2_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-77373-5

  • Online ISBN: 978-0-387-77374-2

Publish with us

Policies and ethics